WCRP CMIP6 CMIP IPSL IPSL-CM6A-LR historical

Boucher, Olivier et al.

Dataset Group
Summary
These data include all datasets published for 'CMIP6.CMIP.IPSL.IPSL-CM6A-LR.historical' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The IPSL-CM6A-LR climate model, released in 2017, includes the following components: atmos: LMDZ (NPv6, N96; 144 x 143 longitude/latitude; 79 levels; top level 80000 m), land: ORCHIDEE (v2.0, Water/Carbon/Energy mode), ocean: NEMO-OPA (eORCA1.3, tripolar primarily 1deg; 362 x 332 longitude/latitude; 75 levels; top grid cell 0-2 m), ocnBgchem: NEMO-PISCES, seaIce: NEMO-LIM3. The model was run by the Institut Pierre Simon Laplace, Paris 75252, France (IPSL) in native nominal resolutions: atmos: 250 km, land: 250 km, ocean: 100 km, ocnBgchem: 100 km, seaIce: 100 km.

Individuals using the data must abide by terms of use for CMIP6 data (https://pcmdi.llnl.gov/CMIP6/TermsOfUse). The original license restrictions on these datasets were recorded as global attributes in the data files, but these may have been subsequently updated.
Project
CMIP6 (WCRP Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets)
Contact
Olivier Boucher (
 olivier.boucher@nullipsl.fr
0000-0003-2328-5769)

Sébastien Denvil (
 sebastien.denvil@nullipsl.jussieu.fr
0000-0002-6715-3533)

Guillaume Levavasseur (
 Guillaume.Levavasseur@nullipsl.fr
0000-0002-0801-0890)

Anne Cozic (
 anne.cozic@nulllsce.ipsl.fr
0000-0001-7543-3466)

Arnaud Caubel (
 arnaud.caubel@nulllsce.ipsl.fr
0000-0002-6210-8370)

Marie-Alice Foujols (
 marie-alice.foujols@nullipsl.jussieu.fr
0000-0002-9747-4928)

Yann Meurdesoif (
 yann.meurdesoif@nulllsce.ipsl.fr
)

Patricia Cadule (
 patricia.cadule@nullipsl.jussieu.fr
0000-0002-4830-5802)

Marion Devilliers (
 marion.devilliers@nullu-bordeaux.fr
0000-0002-3929-2747)

Josefine Ghattas (
 josefine.ghattas@nullipsl.jussieu.fr
0000-0001-7427-1928)

Nicolas Lebas (
 nicolas.lebas@nulllocean.ipsl.fr
0000-0003-0554-9978)

Thibaut Lurton (
 thibaut.lurton@nullipsl.fr
0000-0002-3364-3809)

Lidia Mellul (
 lidia.mellul@nulllmd.jussieu.fr
)

Ionela Musat (
 ionela.musat@nulllmd.jussieu.fr
0000-0002-0092-9288)

Juliette Mignot (
 juliette.mignot@nulllocean-ipsl.upmc.fr
0000-0002-4894-898X)

Frédérique Cheruy (
 frederique.cheruy@nulllmd.ipsl.fr
0000-0003-2833-7273)
Location(s)
global
Spatial Coverage
Longitude 0 to 360 Latitude -90 to 90
Temporal Coverage
1850-01-16 to 2015-01-01 (gregorian)
Use constraints
Creative Commons Attribution 4.0 International (https://creativecommons.org/licenses/by/4.0/)
Data Catalog
World Data Center for Climate
Size
26.19 TiB (28791797861311 Byte)
Format
NetCDF
Status
completely archived
Creation Date
Future Review Date
2033-04-21
Cite as
Boucher, Olivier; Denvil, Sébastien; Levavasseur, Guillaume; Cozic, Anne; Caubel, Arnaud; Foujols, Marie-Alice; Meurdesoif, Yann; Cadule, Patricia; Devilliers, Marion; Ghattas, Josefine; Lebas, Nicolas; Lurton, Thibaut; Mellul, Lidia; Musat, Ionela; Mignot, Juliette; Cheruy, Frédérique (2023). IPSL IPSL-CM6A-LR model output prepared for CMIP6 CMIP historical. World Data Center for Climate (WDCC) at DKRZ. https://www.wdc-climate.de/ui/entry?acronym=C6_4552766

BibTeX RIS
Description
as consistent as the model(s) IPSL-CM6A-LR
Description
All TQA checks were passed for WCRP CMIP6 CMIP IPSL IPSL-CM6A-LR historical.
Method
CMIP6-TQA Checks
Method Description
Checks performed by WDCC. CMIP6-TQA metrics are documented: https://redmine.dkrz.de/projects/cmip6-lta-and-data-citation/wiki/Quality_Checks
Method Url
Result Date
2025-06-10
Contact typePersonORCIDOrganization
-
-
-
-
-
-

Is part of

[1] DOI Boucher, Olivier; Denvil, Sébastien; Levavasseur, Guillaume; Cozic, Anne; Caubel, Arnaud; Foujols, Marie-Alice; Meurdesoif, Yann; Cadule, Patricia; Devilliers, Marion; Ghattas, Josefine; Lebas, Nicolas; Lurton, Thibaut; Mellul, Lidia; Musat, Ionela; Mignot, Juliette; Cheruy, Frédérique. (2018). IPSL IPSL-CM6A-LR model output prepared for CMIP6 CMIP historical. doi:10.22033/ESGF/CMIP6.5195

Is referenced by

[1] DOI Keeble, James; Chiodo, Gabriel; Et Al. (2021). Evaluating stratospheric ozone and water vapour changes in CMIP6 models from 1850 to 2100. doi:10.3929/ethz-b-000478110
[2] DOI Kwiatkowski, Lester; Torres, Olivier; Bopp, Laurent; Aumont, Olivier; Chamberlain, Matthew; Christian, James R.; Dunne, John P.; Gehlen, Marion; Ilyina, Tatiana; John, Jasmin G.; Lenton, Andrew; Li, Hongmei; Lovenduski, Nicole S.; Orr, James C.; Palmieri, Julien; Santana-Falcón, Yeray; Schwinger, Jörg; Séférian, Roland; Stock, Charles A.; Tagliabue, Alessandro; Takano, Yohei; Tjiputra, Jerry; Toyama, Katsuya; Tsujino, Hiroyuki; Watanabe, Michio; Yamamoto, Akitomo; Yool, Andrew; Ziehn, Tilo. (2020). Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections. doi:10.5194/bg-17-3439-2020
[3] DOI Smith, Abigail; Jahn, Alexandra; Wang, Muyin. (2020). Seasonal transition dates can reveal biases in Arctic sea ice simulations. doi:10.5194/tc-2020-81
[4] DOI Smith, Abigail; Jahn, Alexandra; Wang, Muyin. (2020). Seasonal transition dates can reveal biases in Arctic sea ice simulations. doi:10.5194/tc-14-2977-2020
[5] DOI Keeble, James; Hassler, Birgit; Banerjee, Antara; Checa-Garcia, Ramiro; Chiodo, Gabriel; Davis, Sean; Eyring, Veronika; Griffiths, Paul T.; Morgenstern, Olaf; Nowack, Peer; Zeng, Guang; Zhang, Jiankai; Bodeker, Greg; Burrows, Susannah; Cameron-Smith, Philip; Cugnet, David; Danek, Christopher; Deushi, Makoto; Horowitz, Larry W.; Kubin, Anne; Li, Lijuan; Lohmann, Gerrit; Michou, Martine; Mills, Michael J.; Nabat, Pierre; Olivié, Dirk; Park, Sungsu; Seland, Øyvind; Stoll, Jens; Wieners, Karl-Hermann; Wu, Tongwen. (2021). Evaluating stratospheric ozone and water vapour changes in CMIP6 models from 1850 to 2100. doi:10.5194/acp-21-5015-2021
[6] DOI Faye, Aissatou; Akinsanola, Akintomide Afolayan. (2021). Evaluation of extreme precipitation indices over West Africa in CMIP6 models. doi:10.1007/s00382-021-05942-2
[7] DOI Zhang, Kequan; Duan, Jiakang; Zhao, Siyi; Zhang, Jiankai; Keeble, James; Liu, Hongwen. (2021). Evaluating the Ozone Valley over the Tibetan Plateau in CMIP6 Models. doi:10.1007/s00376-021-0442-2
[8] DOI Annor, Thompson; Lamptey, Benjamin; Washington, Richard. (2022). Assessment of the unified model in reproducing West African precipitation and temperature climatology. doi:10.1007/s00704-022-03973-1
[9] DOI Kvale, Karin; Keller, David P.; Koeve, Wolfgang; Meissner, Katrin J.; Somes, Chris; Yao, Wanxuan; Oschlies, Andreas. (2020). Explicit silicate cycling in the Kiel Marine Biogeochemistry Model, version 3 (KMBM3) embedded in the UVic ESCM version 2.9. doi:10.5194/gmd-2020-235
[10] DOI Tittensor, Derek P.; Novaglio, Camilla; Harrison, Cheryl S.; Heneghan, Ryan F.; Barrier, Nicolas; Bianchi, Daniele; Bopp, Laurent; Bryndum-Buchholz, Andrea; Britten, Gregory L.; Büchner, Matthias; Cheung, William W. L.; Christensen, Villy; Coll, Marta; Dunne, John P.; Eddy, Tyler D.; Everett, Jason D.; Fernandes-Salvador, Jose A.; Fulton, Elizabeth A.; Galbraith, Eric D.; Gascuel, Didier; Guiet, Jerome; John, Jasmin G.; Link, Jason S.; Lotze, Heike K.; Maury, Olivier; Ortega-Cisneros, Kelly; Palacios-Abrantes, Juliano; Petrik, Colleen M.; du Pontavice, Hubert; Rault, Jonathan; Richardson, Anthony J.; Shannon, Lynne; Shin, Yunne-Jai; Steenbeek, Jeroen; Stock, Charles A.; Blanchard, Julia L. (2021). Next-generation ensemble projections reveal higher climate risks for marine ecosystems. doi:10.1038/s41558-021-01173-9
[11] DOI Cai, Wenju; Yang, Kai; Wu, Lixin; Huang, Gang; Santoso, Agus; Ng, Benjamin; Wang, Guojian; Yamagata, Toshio. (2020). Opposite response of strong and moderate positive Indian Ocean Dipole to global warming. doi:10.1038/s41558-020-00943-1
[12] DOI Loechli, Morgan; Stephens, Britton B.; Commane, Roisin; Chevallier, Frederic; McKain, Kathryn; Ralph, Keeling; Morgan, Eric; Patra, Prabir K.; Sargent, Maryann; Sweeney, Colm; Keppel-Aleks, Gretchen. (2022). Evaluating Northern Hemisphere Growing Season Net Carbon Flux in Climate Models Using Aircraft Observations. doi:10.1002/essoar.10512001.1
[13] DOI Watanabe, Masahiro; Dufresne, Jean-Louis; Kosaka, Yu; Mauritsen, Thorsten; Tatebe, Hiroaki. (2020). Enhanced warming constrained by past trends in equatorial Pacific sea surface temperature gradient. doi:10.1038/s41558-020-00933-3
[14] DOI Lalande, Mickaël; Ménégoz, Martin; Krinner, Gerhard; Naegeli, Kathrin; Wunderle, Stefan. (2021). Climate change in the High Mountain Asia in CMIP6. doi:10.5194/esd-2021-43
[15] DOI Vaittinada Ayar, Pradeebane; Bopp, Laurent; Christian, Jim R.; Ilyina, Tatiana; Krasting, John P.; Séférian, Roland; Tsujino, Hiroyuki; Watanabe, Michio; Yool, Andrew; Tjiputra, Jerry. (2022). Contrasting projections of the ENSO-driven CO<sub>2</sub> flux variability in the equatorial Pacific under high-warming scenario. doi:10.5194/esd-13-1097-2022
[16] DOI Wang, Shizhu; Wang, Qiang; Wang, Muyin; Lohmann, Gerrit; Qiao, Fangli. (2022). Arctic Ocean Freshwater in CMIP6 Coupled Models. doi:10.1029/2022ef002878
[17] DOI Dahlke, Flemming T.; Wohlrab, Sylke; Butzin, Martin; Pörtner, Hans-Otto. (2020). Thermal bottlenecks in the life cycle define climate vulnerability of fish. doi:10.1126/science.aaz3658
[18] DOI Weijer, W.; Cheng, W.; Garuba, O. A.; Hu, A.; Nadiga, B. T. (2020). CMIP6 Models Predict Significant 21st Century Decline of the Atlantic Meridional Overturning Circulation. doi:10.1029/2019gl086075
[19] DOI Akinsanola, Akintomide Afolayan; Ogunjobi, Kehinde O; Abolude, Akintayo T; Salack, Seyni. (2021). Projected changes in wind speed and wind energy potential over West Africa in CMIP6 models. doi:10.1088/1748-9326/abed7a
[20] DOI Jönsson, A., Bender, F. A. (2022). Persistence and Variability of Earth`s Interhemispheric Albedo Symmetry in 19 Years of CERES EBAF Observations. doi:10.1175/jcli-d-20-0970.1
[21] DOI Zhao, Siyi; Zhang, Jiankai; Zhang, Chongyang; Xu, Mian; Keeble, James; Wang, Zhe; Xia, Xufan. (2022). Evaluating Long-Term Variability of the Arctic Stratospheric Polar Vortex Simulated by CMIP6 Models. doi:10.3390/rs14194701
[22] DOI Çetin, I. I.; Yücel, I.; Yılmaz, M. T.; Önol, B. (2024). Historical variability of Coupled Model Intercomparison Project Version 6 (CMIP6)-driven surface winds and global reanalysis data for the Eastern Mediterranean. doi:10.1007/s00704-024-04869-y
[23] DOI Papalexiou, Simon Michael; Rajulapati, Chandra Rupa; Andreadis, Konstantinos M.; Foufoula‐Georgiou, Efi; Clark, Martyn P.; Trenberth, Kevin E. (2021). Probabilistic Evaluation of Drought in CMIP6 Simulations. doi:10.1029/2021ef002150
[24] DOI Naskar, Pravat Rabi; Mohapatra, Mrutyunjay; Singh, Gyan Prakash. (2024). CMIP6 projections of surface latent heat flux over the North Indian Ocean. doi:10.1007/s00704-024-05114-2
[25] DOI Ngoma, Hamida; Wen, Wang; Ayugi, Brian; Babaousmail, Hassen; Karim, Riwzan; Ongoma, Victor. (2021). Evaluation of the Global Climate Models in CMIP6 over Uganda. doi:10.20944/preprints202012.0782.v1
[26] DOI Prathom, Chotirose; Champrasert, Paskorn. (2023). General Circulation Model Downscaling Using Interpolation—Machine Learning Model Combination—Case Study: Thailand. doi:10.3390/su15129668
[27] DOI Annor, Thompson; Ackon, Apphia Tetteh; James, Rachel; Dyer, Ellen; Webb, Thomas; Pokam, Wilfried Mba; Kuete Gouandjo, Giresse; Washington, Richard; Abiodun, Babatunde J. (2023). Heat band, rain band and heat low migration: process-based evaluation of some CMIP6 GCMs over West Africa. doi:10.1007/s00382-023-06930-4
[28] DOI Kouki, Kerttu; Räisänen, Petri; Luojus, Kari; Luomaranta, Anna; Riihelä, Aku. (2022). Evaluation of Northern Hemisphere snow water equivalent in CMIP6 models during 1982–2014. doi:10.5194/tc-16-1007-2022
[29] DOI Müller, Jurek; Joos, Fortunat. (2021). Global peatlands under future climate – seamless model projections from the Last Glacial Maximum. doi:10.5194/bg-2021-80
[30] DOI Yamamoto, Ana Letícia Campos; Corrêa, Marcelo de Paula; Torres, Roger Rodrigues; Martins, Fabrina Bolzan; Godin-Beekmann, Sophie. (2024). Projected changes in ultraviolet index and UV doses over the twenty-first century: impacts of ozone and aerosols from CMIP6. doi:10.1007/s43630-024-00594-7
[31] DOI Kleinen, Thomas. (2021). Review of bg-2021-80. doi:10.5194/bg-2021-80-rc2
[32] DOI Duffy, Margaret L; O'Gorman, Paul A. (2022). Intermodel spread in Walker circulation responses linked to spread in moist stability and radiation responses. doi:10.22541/essoar.167078790.00035564/v1
[33] DOI Ferreira, Glauber Willian de Souza; Reboita, Michelle Simões; Ribeiro, João Gabriel Martins; de Souza, Christie André. (2023). Assessment of Precipitation and Hydrological Droughts in South America through Statistically Downscaled CMIP6 Projections. doi:10.3390/cli11080166
[34] DOI Ngoma, Hamida; Wen, Wang; Ayugi, Brian; Babaousmail, Hassen; Karim, Rizwan; Ongoma, Victor. (2021). Evaluation of precipitation simulations in CMIP6 models over Uganda. doi:10.1002/joc.7098
[35] DOI Mohan, Soumya; Ruchith, R. D. (2023). On the simulations of latent heat flux over the Indian Ocean in CMIP6 models. doi:10.1007/s00382-023-06871-y
[36] DOI Lalande, Mickaël; Ménégoz, Martin; Krinner, Gerhard; Naegeli, Kathrin; Wunderle, Stefan. (2021). Climate change in the High Mountain Asia in CMIP6. doi:10.5194/esd-12-1061-2021
[37] DOI Müller, Jurek; Joos, Fortunat. (2021). Committed and projected future changes in global peatlands – continued transient model simulations since the Last Glacial Maximum. doi:10.5194/bg-18-3657-2021
[38] DOI Paçal, Aytaç; Hassler, Birgit; Weigel, Katja; Kurnaz, M. Levent; Wehner, Michael F.; Eyring, Veronika. (2023). Detecting Extreme Temperature Events Using Gaussian Mixture Models. doi:10.1029/2023jd038906
[39] DOI Müller, Jurek. (2020). Response to reviewer comments. doi:10.5194/bg-2020-110-ac1
[40] DOI Cutillas-Lozano, Luis Gabino; López, Mario Santa Cruz; Velasco, Antonio Pérez; Andrés-Doménech, Ignacio; Olcina-Cantos, Jorge. (2023). Local-scale regionalisation of climate change effects on rainfall pattern: application to Alicante City (Spain). doi:10.1007/s00704-023-04565-3
[41] DOI Rettie, Fasil M.; Gayler, Sebastian; Weber, Tobias K. D.; Tesfaye, Kindie; Streck, Thilo. (2023). High-resolution CMIP6 climate projections for Ethiopia using the gridded statistical downscaling method. doi:10.1038/s41597-023-02337-2
[42] DOI Yamamoto, Ana Letícia Campos; Corrêa, Marcelo de Paula; Torres, Roger Rodrigues; Martins, Fabrina Bolzan; Godin-Beekmann, Sophie. (2024). Total ozone content, total cloud cover, and aerosol optical depth in CMIP6: simulations performance and projected changes. doi:10.1007/s00704-023-04821-6
[43] DOI AYAR, Pradeebane VAITTINADA; Battisti, David S.; Li, Camille; King, Martin Peter; Vrac, Mathieu; Tjiputra, Jerry Fong. (2023). A regime view of ENSO flavours through clustering in CMIP6 models. doi:10.22541/essoar.167458065.54814300/v2
[44] DOI Aylmer, Jake R.; Ferreira, David; Feltham, Daniel L. (2024). Impact of ocean heat transport on sea ice captured by a simple energy balance model. doi:10.1038/s43247-024-01565-7
[45] DOI Zhang, Le; Xue, Z. George. (2022). A Numerical reassessment of the Gulf of Mexico carbon system in connection with the Mississippi River and global ocean. doi:10.5194/bg-19-4589-2022
[46] DOI Sellevold, Raymond; Vizcaino, Miren. (2021). First Application of Artificial Neural Networks to Estimate 21st Century Greenland Ice Sheet Surface Melt. doi:10.1029/2021gl092449
[47] DOI Hinrichs, Claudia; Hauck, Judith. (2022). Report on skill of CMIP6 models to simulate alkalinity and improved parameterizations for large scale alkalinity distribution. doi:10.3289/oceannets_d4.4
[48] DOI Andrade-Velázquez, Mercedes; Montero-Martínez, Martín José. (2023). Historical and Projected Trends of the Mean Surface Temperature in South-Southeast Mexico Using ERA5 and CMIP6. doi:10.3390/cli11050111
[49] DOI Nogueira, Miguel. (2021). Multivariate Process-Based Evaluation of CMIP6 Historical Simulations Over the Tropical Oceans. doi:10.21203/rs.3.rs-458817/v1
[50] DOI Bhattacharya, Biswarup; Mohanty, Sachiko; Singh, Charu. (2022). Assessment of the potential of CMIP6 models in simulating the sea surface temperature variability over the tropical Indian Ocean. doi:10.1007/s00704-022-03952-6
[51] DOI Li, Juan; Zhao, Yuexuan; Wang, Menglu; Tan, Wei; Yin, Jiyuan. (2024). Projected Changes of Wind Energy Input to Surface Waves in the North Indian Ocean Based on CMIP6. doi:10.3390/atmos15010139
[52] DOI Kouki, Kerttu; Räisänen, Petri; Luojus, Kari; Luomaranta, Anna; Riihelä, Aku. (2022). Evaluation of Northern Hemisphere snow water equivalent in CMIP6 models during 1982-2014. doi:10.5194/ems2022-447
[53] DOI de Souza Ferreira, Glauber Willian; Reboita, M. S.; Ribeiro, J. G. M.; Carvalho, V. S. B.; Santiago, M. E. V.; Silva, P. L. L. S.; Baldoni, T. C.; de Souza, C. A. (2023). Assessment of the wind power density over South America simulated by CMIP6 models in the present and future climate. doi:10.1007/s00382-023-06993-3
[54] DOI Müller, Jurek. (2021). Response to reviewer comments. doi:10.5194/bg-2021-80-ac2
[55] DOI Kvale, Karin; Keller, David P.; Koeve, Wolfgang; Meissner, Katrin J.; Somes, Christopher J.; Yao, Wanxuan; Oschlies, Andreas. (2021). Explicit silicate cycling in the Kiel Marine Biogeochemistry Model version 3 (KMBM3) embedded in the UVic ESCM version 2.9. doi:10.5194/gmd-14-7255-2021
[56] DOI Kivimäki, Mika; Batty, G. David; Pentti, Jaana; Suomi, Juuso; Nyberg, Solja T.; Merikanto, Joonas; Nordling, Kalle; Ervasti, Jenni; Suominen, Sakari B.; Partanen, Antti-Ilari; Stenholm, Sari; Käyhkö, Jukka; Vahtera, Jussi. (2023). Climate Change, Summer Temperature, and Heat-Related Mortality in Finland: Multicohort Study with Projections for a Sustainable vs. Fossil-Fueled Future to 2050. doi:10.1289/ehp12080
[57] DOI Sung, Jang Hyun; Kang, Dong Ho; Seo, Young-Ho; Kim, Byung Sik. (2023). Analysis of Extreme Rainfall Characteristics in 2022 and Projection of Extreme Rainfall Based on Climate Change Scenarios. doi:10.3390/w15223986
[58] DOI Ferreira, Glauber Willian de Souza; Reboita, Michelle Simões; Ribeiro, João Gabriel Martins; De Souza, Christie André. (2023). Assessment of Precipitation and Hydrological Droughts in South America through Statistically Downscaled CMIP6 Pro-jections. doi:10.20944/preprints202307.0373.v1
[59] DOI PAÇAL, Aytaç; Hassler, Birgit; Weigel, Katja; Kurnaz, Mehmet Levent; Wehner, Michael F; Eyring, Veronika. (2023). Detecting Extreme Temperature Events Using Gaussian Mixture Models. doi:10.22541/essoar.168275876.64237989/v1
[60] DOI Vaittinada Ayar, Pradeebane; Battisti, David; Li, Camille; King, Martin; Vrac, Mathieu; Tjiputra, Jerry. (2024). A Regime View of ENSO Flavors Through Clustering in CMIP6 Models. doi:10.5194/egusphere-egu24-12936
[61] DOI Hinrichs, Claudia; Köhler, Peter; Völker, Christoph; Hauck, Judith. (2023). Alkalinity biases in CMIP6 Earth system models and implications for simulated CO2 drawdown via artificial alkalinity enhancement. doi:10.5194/bg-20-3717-2023
[62] DOI DeRepentigny, Patricia; Jahn, Alexandra; Holland, Marika M.; Kay, Jennifer E.; Fasullo, John; Lamarque, Jean-François; Tilmes, Simone; Hannay, Cécile; Mills, Michael J.; Bailey, David A.; Barrett, Andrew P. (2022). Enhanced simulated early 21st century Arctic sea ice loss due to CMIP6 biomass burning emissions. doi:10.1126/sciadv.abo2405
[63] DOI Naskar, Pravat Rabi; Singh, Gyan Prakash; Pattanaik, Dushmanta Ranjan. (2024). CMIP6 projected sea surface temperature over the North Indian Ocean. doi:10.1007/s12040-024-02443-8
[64] DOI Reboita, Michelle Simões; Ferreira, Glauber Willian de Souza; Ribeiro, João Gabriel Martins; da Rocha, Rosmeri Porfírio; Rao, Vadlamudi Brahmananda. (2023). South American Monsoon Lifecycle Projected by Statistical Downscaling with CMIP6-GCMs. doi:10.3390/atmos14091380

Is related to

[1] DOI Koven, Charles D.; Arora, Vivek K.; Cadule, Patricia; Fisher, Rosie A.; Jones, Chris D.; Lawrence, David M.; Lewis, Jared; Lindsay, Keith; Mathesius, Sabine; Meinshausen, Malte; Mills, Michael; Nicholls, Zebedee; Sanderson, Benjamin M.; Séférian, Roland; Swart, Neil C.; Wieder, William R.; Zickfeld, Kirsten. (2022). Multi-century dynamics of the climate and carbon cycle under both high and net negative emissions scenarios. doi:10.5194/esd-13-885-2022
[2] DOI Akinsanola, Akintomide Afolayan; Ongoma, Victor; Kooperman, Gabriel J. (2021). Evaluation of CMIP6 models in simulating the statistics of extreme precipitation over Eastern Africa. doi:10.1016/j.atmosres.2021.105509
[3] DOI Keeble, James; Hassler, Birgit; Banerjee, Antara; Checa-Garcia, Ramiro; Chiodo, Gabriel; Davis, Sean; Eyring, Veronika; Griffiths, Paul T.; Morgenstern, Olaf; Nowack, Peer; Zeng, Guang; Zhang, Jiankai; Bodeker, Greg; Cugnet, David; Danabasoglu, Gokhan; Deushi, Makoto; Horowitz, Larry W.; Li, Lijuan; Michou, Martine; Mills, Michael J.; Nabat, Pierre; Park, Sungsu; Wu, Tongwen. (2020). Evaluating stratospheric ozone and water vapor changes in CMIP66 models from 1850–2100. doi:10.5194/acp-2019-1202
[4] DOI Rivera, Paris. (2022). Evaluation of Historical Simulations of CMIP6 Models for Temperature and Precipitation in Guatemala. doi:10.1007/s41748-022-00333-x
[5] DOI Loechli, Morgan; Stephens, Britton B.; Commane, Roisin; Chevallier, Frédéric; McKain, Kathryn; Keeling, Ralph F.; Morgan, Eric J.; Patra, Prabir K.; Sargent, Maryann R.; Sweeney, Colm; Keppel‐Aleks, Gretchen. (2023). Evaluating Northern Hemisphere Growing Season Net Carbon Flux in Climate Models Using Aircraft Observations. doi:10.1029/2022gb007520
[6] DOI Rohr, Tyler; Richardson, Anthony J.; Lenton, Andrew; Chamberlain, Matthew A.; Shadwick, Elizabeth H. (2023). Zooplankton grazing is the largest source of uncertainty for marine carbon cycling in CMIP6 models. doi:10.1038/s43247-023-00871-w
[7] DOI Olson, Roman; Kim, Soong-Ki; Fan, Yanan; An, Soon-Il. (2022). Probabilistic projections of El Niño Southern Oscillation properties accounting for model dependence and skill. doi:10.1038/s41598-022-26513-3
[8] DOI Rajulapati, Chandra Rupa; Papalexiou, Simon Michael. (2023). Precipitation Bias Correction: A Novel Semi‐parametric Quantile Mapping Method. doi:10.1029/2023ea002823
[9] DOI Krause, Andreas; Papastefanou, Phillip; Gregor, Konstantin; Layritz, Lucia S.; Zang, Christian S.; Buras, Allan; Li, Xing; Xiao, Jingfeng; Rammig, Anja. (2022). Quantifying the impacts of land cover change on gross primary productivity globally. doi:10.1038/s41598-022-23120-0
[10] DOI Ferreira, Glauber; Reboita, Michelle; Ribeiro, João Gabriel; Carvalho, Vanessa; Santiago, Maria; Silva, Pedro; Baldoni, Thales; Souza, Christie. (2023). Assessment of the wind power density over South America simulated by CMIP6 models in the present and future climate. doi:10.21203/rs.3.rs-2983877/v1
[11] DOI Smith, Callum; Baker, Jessica; Robertson, Eddy; Chadwick, Robin; Kelley, Douglas; Argles, Arthur; Coelho, Caio; Castilho, Dayana; Kubota, Paulo; Talamoni, Isabella; Spracklen, Dominick. (2023). Observed and simulated local climate responses to tropical deforestation. doi:10.5194/egusphere-egu23-5938
[12] DOI Bulgin, Claire E; Mecking, Jennifer V; Harvey, Ben J; Jevrejeva, Svetlana; McCarroll, Niall F; Merchant, Christopher J; Sinha, Bablu. (2023). Dynamic sea-level changes and potential implications for storm surges in the UK: a storylines perspective. doi:10.1088/1748-9326/acc6df
[13] DOI Yalcin, Emrah. (2023). Quantifying climate change impacts on hydropower production under CMIP6 multi-model ensemble projections using SWAT model. doi:10.1080/02626667.2023.2245815
[14] DOI Rodgers, Keith B.; Schwinger, Jörg; Fassbender, Andrea J.; Landschützer, Peter; Yamaguchi, Ryohei; Frenzel, Hartmut; Stein, Karl; Müller, Jens Daniel; Goris, Nadine; Sharma, Sahil; Bushinsky, Seth; Chau, Thi‐Tuyet‐Trang; Gehlen, Marion; Gallego, M. Angeles; Gloege, Lucas; Gregor, Luke; Gruber, Nicolas; Hauck, Judith; Iida, Yosuke; Ishii, Masao; Keppler, Lydia; Kim, Ji‐Eun; Schlunegger, Sarah; Tjiputra, Jerry; Toyama, Katsuya; Vaittinada Ayar, Pradeebane; Velo, Antón. (2023). Seasonal Variability of the Surface Ocean Carbon Cycle: A Synthesis. doi:10.1029/2023gb007798
[15] DOI Williamson, Tanja N.; Barton, Christopher D. (2020). Hydrologic modeling to examine the influence of the forestry reclamation approach and climate change on mineland hydrology. doi:10.1016/j.scitotenv.2020.140605

Is cited by

[1] DOI Fox-Kemper, B.; Hewitt, H.T.; Xiao, C.; Aðalgeirsdóttir, G.; Drijfhout, S.S.; Edwards, T.L.; Golledge, N.R.; Hemer, M.; Kopp, R.E.; Krinner, G.; Mix, A.; Notz, D.; Nowicki, S.; Nurhati, I.S.; Ruiz, L.; Sallée, J.-B.; Slangen, A.B.A.; Yu, Y. (2023). Ocean, Cryosphere and Sea Level Change. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.011
[2] DOI Lee, J.-Y.; Marotzke, J.; Bala, G.; Cao, L.; Corti, S.; Dunne, J.P.; Engelbrecht, F.; Fischer, E.; Fyfe, J.C; Jones, C.; Maycock, A.; Mutemi, J.; Ndiaye, O.; Panickal, S.; Zhou,T. (2023). Future Global Climate: Scenario-Based Projections and Near-Term Information. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.006
[3] DOI Eyring, V.; Gillett, N.P.; Achuta Rao, K.M.; Barimalala, R.; Barreiro Parrillo, M.; Bellouin, N.; Cassou, C.; Durack, P.J.; Kosaka, Y.; McGregor, S.; Min, S.; Morgenstern, O.; Sun, Y. (2023). Human Influence on the Climate System. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.005
[4] DOI Doblas-Reyes, F.J.; Sörensson, A.A.; Almazroui, M.; Dosio, A.; Gutowski, W.J.; Haarsma, R.; Hamdi, R.; Hewitson, B.; Kwon, W.-T.; Lamptey, B.L.; Maraun, D.; Stephenson, T.S.; Takayabu, I.; Terray, L.; Turner, A.; Zuo, Z. (2023). Linking Global to Regional Climate Change. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.012
[5] DOI Seneviratne, S.I.; Zhang, X.; Adnan, M.; Badi, W.; Dereczynski, C.; Di Luca, A.; Ghosh, S.; Iskandar, I.; Kossin, J.; Lewis, S.; Otto, F.; Pinto, I.; Satoh, M.; Vicente-Serrano, S.M.; Wehner, M.; Zhou, B. (2023). Weather and Climate Extreme Events in a Changing Climate. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.013
[6] DOI Gutiérrez, J.M.; Jones, R.G.; Narisma, G.T.; Alves, L.M.; Amjad, M.; Gorodetskaya, I.V.; Grose, M.; Klutse, N.A.B.; Krakovska, S.; Li, J.; Martínez-Castro, D.; Mearns, L.O.; Mernild, S.H.; Ngo-Duc, T.; van den Hurk, B.; Yoon, J.-H. (2023). Atlas. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change[Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.021
[7] DOI Intergovernmental Panel on Climate Change (IPCC). (2023). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896
[8] DOI Canadell, J.G.; Monteiro, P.M.S; Costa, M.H.; Cotrim da Cunha, L.; Cox, P.M.; Eliseev, A.V.; Henson, S.; Ishii, M.; Jaccard, S.; Koven, C.; Lohila, A.; Patra, P.K.; Piao, S.; Rogelj, J.; Syampungani, S.; Zaehle, S.; Zickfeld, K. (2023). Global Carbon and other Biogeochemical Cycles and Feedbacks. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.007
[9] DOI Douville, H.; Raghavan, K.; Renwick, J.; Allan, R.P.; Arias, P.A.; Barlow, M.; Cerezo-Mota, R.; Cherchi, A.; Gan, T.Y.; Gergis, J.; Jiang, D.; Khan, A.; Pokam Mba, W.; Rosenfeld, D.; Tierney, J.; Zolina, O. (2023). Water Cycle Changes. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.010

Parent

WCRP CMIP6 CMIP IPSL IPSL-CM6A-LR
Details

Attached Datasets ( 8481 )

Details for selected entry
[Entry acronym: C6_4552766] [Entry id: 4552766]