WCRP CMIP6 CMIP IPSL IPSL-CM6A-LR

Boucher, Olivier et al.

Experiment
Summary
These data include all datasets published for 'CMIP6.CMIP.IPSL.IPSL-CM6A-LR' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The IPSL-CM6A-LR climate model, released in 2017, includes the following components: atmos: LMDZ (NPv6, N96; 144 x 143 longitude/latitude; 79 levels; top level 80000 m), land: ORCHIDEE (v2.0, Water/Carbon/Energy mode), ocean: NEMO-OPA (eORCA1.3, tripolar primarily 1deg; 362 x 332 longitude/latitude; 75 levels; top grid cell 0-2 m), ocnBgchem: NEMO-PISCES, seaIce: NEMO-LIM3. The model was run by the Institut Pierre Simon Laplace, Paris 75252, France (IPSL) in native nominal resolutions: atmos: 250 km, land: 250 km, ocean: 100 km, ocnBgchem: 100 km, seaIce: 100 km.

Individuals using the data must abide by terms of use for CMIP6 data (https://pcmdi.llnl.gov/CMIP6/TermsOfUse). The original license restrictions on these datasets were recorded as global attributes in the data files, but these may have been subsequently updated.
Project
CMIP6 (WCRP Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets)
Contact
Olivier Boucher (
 olivier.boucher@nullipsl.fr
0000-0003-2328-5769)

Sébastien Denvil (
 sebastien.denvil@nullipsl.jussieu.fr
0000-0002-6715-3533)

Guillaume Levavasseur (
 Guillaume.Levavasseur@nullipsl.fr
0000-0002-0801-0890)

Anne Cozic (
 anne.cozic@nulllsce.ipsl.fr
0000-0001-7543-3466)

Arnaud Caubel (
 arnaud.caubel@nulllsce.ipsl.fr
0000-0002-6210-8370)

Marie-Alice Foujols (
 marie-alice.foujols@nullipsl.jussieu.fr
0000-0002-9747-4928)

Yann Meurdesoif (
 yann.meurdesoif@nulllsce.ipsl.fr
)

Patricia Cadule (
 patricia.cadule@nullipsl.jussieu.fr
0000-0002-4830-5802)

Marion Devilliers (
 marion.devilliers@nullu-bordeaux.fr
0000-0002-3929-2747)

Josefine Ghattas (
 josefine.ghattas@nullipsl.jussieu.fr
0000-0001-7427-1928)

Nicolas Lebas (
 nicolas.lebas@nulllocean.ipsl.fr
0000-0003-0554-9978)

Thibaut Lurton (
 thibaut.lurton@nullipsl.fr
0000-0002-3364-3809)

Lidia Mellul (
 lidia.mellul@nulllmd.jussieu.fr
)

Ionela Musat (
 ionela.musat@nulllmd.jussieu.fr
0000-0002-0092-9288)

Juliette Mignot (
 juliette.mignot@nulllocean-ipsl.upmc.fr
0000-0002-4894-898X)

Frédérique Cheruy (
 frederique.cheruy@nulllmd.ipsl.fr
0000-0003-2833-7273)
Location(s)
global
Spatial Coverage
Longitude 0 to 360 Latitude -90 to 90
Temporal Coverage
1750-01-16 to 3849-12-16 (gregorian)
Use constraints
Creative Commons Attribution 4.0 International (CC BY 4.0) (https://creativecommons.org/licenses/by/4.0/)
Data Catalog
World Data Center for Climate
Size
106.24 TiB (116811318929201 Byte)
Format
NetCDF
Status
metadata only
Creation Date
Future Review Date
2033-04-21
Cite as
Boucher, Olivier; Denvil, Sébastien; Levavasseur, Guillaume; Cozic, Anne; Caubel, Arnaud; Foujols, Marie-Alice; Meurdesoif, Yann; Cadule, Patricia; Devilliers, Marion; Ghattas, Josefine; Lebas, Nicolas; Lurton, Thibaut; Mellul, Lidia; Musat, Ionela; Mignot, Juliette; Cheruy, Frédérique (2023). IPSL IPSL-CM6A-LR model output prepared for CMIP6 CMIP. World Data Center for Climate (WDCC) at DKRZ. https://www.wdc-climate.de/ui/entry?acronym=C6_4552764

BibTeX RIS
Description
as consistent as the model(s) IPSL-CM6A-LR
Contact typePersonORCIDOrganization
-
-
-
-
-
-

Is part of

[1] DOI Boucher, Olivier; Denvil, Sébastien; Levavasseur, Guillaume; Cozic, Anne; Caubel, Arnaud; Foujols, Marie-Alice; Meurdesoif, Yann; Cadule, Patricia; Devilliers, Marion; Ghattas, Josefine; Lebas, Nicolas; Lurton, Thibaut; Mellul, Lidia; Musat, Ionela; Mignot, Juliette; Cheruy, Frédérique. (2018). IPSL IPSL-CM6A-LR model output prepared for CMIP6 CMIP. doi:10.22033/ESGF/CMIP6.1534

Is referenced by

[1] DOI Wang, Meirong; Wang, Jun; Chen, Deliang; Duan, Anmin; Liu, Yimin; Zhou, Shunwu; Guo, Dong; Wang, Hengmao; Ju, Weimin. (2020). Recent recovery of the boreal spring sensible heating over the Tibetan Plateau will continue in CMIP6 future projections. doi:10.1088/1748-9326/ab57a3
[2] DOI Keeble, James; Chiodo, Gabriel; Et Al. (2021). Evaluating stratospheric ozone and water vapour changes in CMIP6 models from 1850 to 2100. doi:10.3929/ethz-b-000478110
[3] DOI Kwiatkowski, Lester; Torres, Olivier; Bopp, Laurent; Aumont, Olivier; Chamberlain, Matthew; Christian, James R.; Dunne, John P.; Gehlen, Marion; Ilyina, Tatiana; John, Jasmin G.; Lenton, Andrew; Li, Hongmei; Lovenduski, Nicole S.; Orr, James C.; Palmieri, Julien; Santana-Falcón, Yeray; Schwinger, Jörg; Séférian, Roland; Stock, Charles A.; Tagliabue, Alessandro; Takano, Yohei; Tjiputra, Jerry; Toyama, Katsuya; Tsujino, Hiroyuki; Watanabe, Michio; Yamamoto, Akitomo; Yool, Andrew; Ziehn, Tilo. (2020). Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections. doi:10.5194/bg-17-3439-2020
[4] DOI Smith, Abigail; Jahn, Alexandra; Wang, Muyin. (2020). Seasonal transition dates can reveal biases in Arctic sea ice simulations. doi:10.5194/tc-2020-81
[5] DOI Terhaar, Jens; Torres, Olivier; Bourgeois, Timothée; Kwiatkowski, Lester. (2021). Arctic Ocean acidification over the 21st century co-driven by anthropogenic carbon increases and freshening in the CMIP6 model ensemble. doi:10.5194/egusphere-egu21-7937
[6] DOI Smith, Abigail; Jahn, Alexandra; Wang, Muyin. (2020). Seasonal transition dates can reveal biases in Arctic sea ice simulations. doi:10.5194/tc-14-2977-2020
[7] DOI Keeble, James; Hassler, Birgit; Banerjee, Antara; Checa-Garcia, Ramiro; Chiodo, Gabriel; Davis, Sean; Eyring, Veronika; Griffiths, Paul T.; Morgenstern, Olaf; Nowack, Peer; Zeng, Guang; Zhang, Jiankai; Bodeker, Greg; Burrows, Susannah; Cameron-Smith, Philip; Cugnet, David; Danek, Christopher; Deushi, Makoto; Horowitz, Larry W.; Kubin, Anne; Li, Lijuan; Lohmann, Gerrit; Michou, Martine; Mills, Michael J.; Nabat, Pierre; Olivié, Dirk; Park, Sungsu; Seland, Øyvind; Stoll, Jens; Wieners, Karl-Hermann; Wu, Tongwen. (2021). Evaluating stratospheric ozone and water vapour changes in CMIP6 models from 1850 to 2100. doi:10.5194/acp-21-5015-2021
[8] DOI Chenal, Jonathan; Meyssignac, Benoît; Ribes, Aurélien; Guillaume-Castel, Robin. (2022). Observational Constraint on the Climate Sensitivity to Atmospheric CO2 Concentrations Changes Derived from the 1971–2017 Global Energy Budget. doi:10.1175/jcli-d-21-0565.1
[9] DOI Vrac, Mathieu; Thao, Soulivanh; Yiou, Pascal. (2022). Should multivariate bias corrections of climate simulations account for changes of rank correlation over time?. doi:10.1002/essoar.10510318.1
[10] DOI Tittensor, Derek P.; Novaglio, Camilla; Harrison, Cheryl S.; Heneghan, Ryan F.; Barrier, Nicolas; Bianchi, Daniele; Bopp, Laurent; Bryndum-Buchholz, Andrea; Britten, Gregory L.; Büchner, Matthias; Cheung, William W. L.; Christensen, Villy; Coll, Marta; Dunne, John P.; Eddy, Tyler D.; Everett, Jason D.; Fernandes-Salvador, Jose A.; Fulton, Elizabeth A.; Galbraith, Eric D.; Gascuel, Didier; Guiet, Jerome; John, Jasmin G.; Link, Jason S.; Lotze, Heike K.; Maury, Olivier; Ortega-Cisneros, Kelly; Palacios-Abrantes, Juliano; Petrik, Colleen M.; du Pontavice, Hubert; Rault, Jonathan; Richardson, Anthony J.; Shannon, Lynne; Shin, Yunne-Jai; Steenbeek, Jeroen; Stock, Charles A.; Blanchard, Julia L. (2021). Next-generation ensemble projections reveal higher climate risks for marine ecosystems. doi:10.1038/s41558-021-01173-9
[11] DOI Jung, Christopher; Schindler, Dirk. (2022). Development of onshore wind turbine fleet counteracts climate change-induced reduction in global capacity factor. doi:10.1038/s41560-022-01056-z
[12] DOI Vrac, Mathieu; Thao, Soulivanh; Yiou, Pascal. (2022). Changes in temperature–precipitation correlations over Europe: are climate models reliable?. doi:10.1007/s00382-022-06436-5
[13] DOI Sulpis, Olivier; Jeansson, Emil; Dinauer, Ashley; Lauvset, Siv K.; Middelburg, Jack J. (2021). Calcium carbonate dissolution patterns in the ocean. doi:10.1038/s41561-021-00743-y
[14] DOI Wang, Haolin; Lu, Xiao; Jacob, Daniel J.; Cooper, Owen R.; Chang, Kai-Lan; Li, Ke; Gao, Meng; Liu, Yiming; Sheng, Bosi; Wu, Kai; Wu, Tongwen; Zhang, Jie; Sauvage, Bastien; Nédélec, Philippe; Blot, Romain; Fan, Shaojia. (2022). Global tropospheric ozone trends, attributions, and radiative impacts in 1995–2017: an integrated analysis using aircraft (IAGOS) observations, ozonesonde, and multi-decadal chemical model simulations. doi:10.5194/acp-2022-381
[15] DOI Balting, Daniel F.; AghaKouchak, Amir; Lohmann, Gerrit; Ionita, Monica. (2021). Northern Hemisphere drought risk in a warming climate. doi:10.1038/s41612-021-00218-2
[16] DOI Yiou, Pascal; Faranda, Davide; Thao, Soulivanh; Vrac, Mathieu. (2021). Projected Changes in the Atmospheric Dynamics of Climate Extremes in France. doi:10.3390/atmos12111440
[17] DOI Carlson, Kimberly M.; Mora, Camilo; Xu, Jinwen; Setter, Renee O.; Harangody, Michelle; Franklin, Erik C.; Kantar, Michael B.; Lucas, Matthew; Menzo, Zachary M.; Spirandelli, Daniele; Schanzenbach, David; Courtlandt Warr, C.; Wong, Amanda E.; Businger, Steven. (2022). Global rainbow distribution under current and future climates. doi:10.1016/j.gloenvcha.2022.102604
[18] DOI Liu, Meng; Yang, Linqing. (2022). Northward expansion of fire-adaptative vegetation in future warming. doi:10.1088/1748-9326/ac417d
[19] DOI Yao, Yuanzhi; Tian, Hanqin; Xu, Xiaofeng; Li, Ya; Pan, Shufen. (2022). Dynamics and controls of inland water CH4 emissions across the Conterminous United States: 1860-2019. doi:10.1016/j.watres.2022.119043
[20] DOI Anderegg, William R. L.; Wu, Chao; Acil, Nezha; Carvalhais, Nuno; Pugh, Thomas A. M.; Sadler, Jon P.; Seidl, Rupert. (2022). A climate risk analysis of Earth’s forests in the 21st century. doi:10.1126/science.abp9723
[21] DOI Cook, B. I.; Mankin, J. S.; Marvel, K.; Williams, A. P.; Smerdon, J. E.; Anchukaitis, K. J. (2020). Twenty‐First Century Drought Projections in the CMIP6 Forcing Scenarios. doi:10.1029/2019ef001461
[22] DOI Herceg, Sina; Kaaya, Ismail; Ascencio-Vásquez, Julián; Fischer, Marie; Weiß, Karl-Anders; Schebek, Liselotte. (2022). The Influence of Different Degradation Characteristics on the Greenhouse Gas Emissions of Silicon Photovoltaics: A Threefold Analysis. doi:10.3390/su14105843

Is source of

[1] DOI Lange, Stefan; Büchner, Matthias. (2021). ISIMIP3b bias-adjusted atmospheric climate input data. doi:10.48364/isimip.842396.1
[2] DOI Lange, Stefan; Büchner, Matthias. (2021). ISIMIP3b bias-adjusted atmospheric climate input data. doi:10.48364/isimip.842396
[3] DOI Büchner, Matthias. (2021). ISIMIP3b ocean input data. doi:10.48364/isimip.575744
[4] DOI Lange, Stefan; Büchner, Matthias. (2022). Secondary ISIMIP3b bias-adjusted atmospheric climate input data. doi:10.48364/isimip.581124.1
[5] DOI Büchner, Matthias. (2021). ISIMIP3b ocean input data. doi:10.48364/isimip.575744.2
[6] DOI Lange, Stefan; Büchner, Matthias. (2022). Secondary ISIMIP3b bias-adjusted atmospheric climate input data. doi:10.48364/isimip.581124
[7] DOI Büchner, Matthias. (2021). ISIMIP3b ocean input data. doi:10.48364/isimip.575744.1

Attached Dataset Groups ( 6 )

Search on group level...Details for selected entry
[Entry acronym: C6_4552764] [Entry id: 4552764]