Is referenced by
[1] DOI Wang, Meirong; Wang, Jun; Chen, Deliang; Duan, Anmin; Liu, Yimin; Zhou, Shunwu; Guo, Dong; Wang, Hengmao; Ju, Weimin.
(2020).
Recent recovery of the boreal spring sensible heating over the Tibetan Plateau will continue in CMIP6 future projections. doi:10.1088/1748-9326/ab57a3 [2] DOI Keeble, James; Chiodo, Gabriel; Et Al.
(2021).
Evaluating stratospheric ozone and water vapour changes in CMIP6 models from 1850 to 2100. doi:10.3929/ethz-b-000478110 [3] DOI Kwiatkowski, Lester; Torres, Olivier; Bopp, Laurent; Aumont, Olivier; Chamberlain, Matthew; Christian, James R.; Dunne, John P.; Gehlen, Marion; Ilyina, Tatiana; John, Jasmin G.; Lenton, Andrew; Li, Hongmei; Lovenduski, Nicole S.; Orr, James C.; Palmieri, Julien; Santana-Falcón, Yeray; Schwinger, Jörg; Séférian, Roland; Stock, Charles A.; Tagliabue, Alessandro; Takano, Yohei; Tjiputra, Jerry; Toyama, Katsuya; Tsujino, Hiroyuki; Watanabe, Michio; Yamamoto, Akitomo; Yool, Andrew; Ziehn, Tilo.
(2020).
Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections. doi:10.5194/bg-17-3439-2020 [4] DOI Smith, Abigail; Jahn, Alexandra; Wang, Muyin.
(2020).
Seasonal transition dates can reveal biases in Arctic sea ice simulations. doi:10.5194/tc-2020-81 [5] DOI Terhaar, Jens; Torres, Olivier; Bourgeois, Timothée; Kwiatkowski, Lester.
(2021).
Arctic Ocean acidification over the 21st century co-driven by anthropogenic carbon increases and freshening in the CMIP6 model ensemble. doi:10.5194/egusphere-egu21-7937 [7] DOI Keeble, James; Hassler, Birgit; Banerjee, Antara; Checa-Garcia, Ramiro; Chiodo, Gabriel; Davis, Sean; Eyring, Veronika; Griffiths, Paul T.; Morgenstern, Olaf; Nowack, Peer; Zeng, Guang; Zhang, Jiankai; Bodeker, Greg; Burrows, Susannah; Cameron-Smith, Philip; Cugnet, David; Danek, Christopher; Deushi, Makoto; Horowitz, Larry W.; Kubin, Anne; Li, Lijuan; Lohmann, Gerrit; Michou, Martine; Mills, Michael J.; Nabat, Pierre; Olivié, Dirk; Park, Sungsu; Seland, Øyvind; Stoll, Jens; Wieners, Karl-Hermann; Wu, Tongwen.
(2021).
Evaluating stratospheric ozone and water vapour changes in CMIP6 models from 1850 to 2100. doi:10.5194/acp-21-5015-2021 [8] DOI Chenal, Jonathan; Meyssignac, Benoît; Ribes, Aurélien; Guillaume-Castel, Robin.
(2022).
Observational Constraint on the Climate Sensitivity to Atmospheric CO2 Concentrations Changes Derived from the 1971–2017 Global Energy Budget. doi:10.1175/jcli-d-21-0565.1 [9] DOI Vrac, Mathieu; Thao, Soulivanh; Yiou, Pascal.
(2022).
Should multivariate bias corrections of climate simulations account for changes of rank correlation over time?. doi:10.1002/essoar.10510318.1 [10] DOI Tittensor, Derek P.; Novaglio, Camilla; Harrison, Cheryl S.; Heneghan, Ryan F.; Barrier, Nicolas; Bianchi, Daniele; Bopp, Laurent; Bryndum-Buchholz, Andrea; Britten, Gregory L.; Büchner, Matthias; Cheung, William W. L.; Christensen, Villy; Coll, Marta; Dunne, John P.; Eddy, Tyler D.; Everett, Jason D.; Fernandes-Salvador, Jose A.; Fulton, Elizabeth A.; Galbraith, Eric D.; Gascuel, Didier; Guiet, Jerome; John, Jasmin G.; Link, Jason S.; Lotze, Heike K.; Maury, Olivier; Ortega-Cisneros, Kelly; Palacios-Abrantes, Juliano; Petrik, Colleen M.; du Pontavice, Hubert; Rault, Jonathan; Richardson, Anthony J.; Shannon, Lynne; Shin, Yunne-Jai; Steenbeek, Jeroen; Stock, Charles A.; Blanchard, Julia L.
(2021).
Next-generation ensemble projections reveal higher climate risks for marine ecosystems. doi:10.1038/s41558-021-01173-9 [11] DOI Jung, Christopher; Schindler, Dirk.
(2022).
Development of onshore wind turbine fleet counteracts climate change-induced reduction in global capacity factor. doi:10.1038/s41560-022-01056-z [12] DOI Vrac, Mathieu; Thao, Soulivanh; Yiou, Pascal.
(2022).
Changes in temperature–precipitation correlations over Europe: are climate models reliable?. doi:10.1007/s00382-022-06436-5 [13] DOI Sulpis, Olivier; Jeansson, Emil; Dinauer, Ashley; Lauvset, Siv K.; Middelburg, Jack J.
(2021).
Calcium carbonate dissolution patterns in the ocean. doi:10.1038/s41561-021-00743-y [14] DOI Wang, Haolin; Lu, Xiao; Jacob, Daniel J.; Cooper, Owen R.; Chang, Kai-Lan; Li, Ke; Gao, Meng; Liu, Yiming; Sheng, Bosi; Wu, Kai; Wu, Tongwen; Zhang, Jie; Sauvage, Bastien; Nédélec, Philippe; Blot, Romain; Fan, Shaojia.
(2022).
Global tropospheric ozone trends, attributions, and radiative impacts in 1995–2017: an integrated analysis using aircraft (IAGOS) observations, ozonesonde, and multi-decadal chemical model simulations. doi:10.5194/acp-2022-381 [16] DOI Yiou, Pascal; Faranda, Davide; Thao, Soulivanh; Vrac, Mathieu.
(2021).
Projected Changes in the Atmospheric Dynamics of Climate Extremes in France. doi:10.3390/atmos12111440 [17] DOI Carlson, Kimberly M.; Mora, Camilo; Xu, Jinwen; Setter, Renee O.; Harangody, Michelle; Franklin, Erik C.; Kantar, Michael B.; Lucas, Matthew; Menzo, Zachary M.; Spirandelli, Daniele; Schanzenbach, David; Courtlandt Warr, C.; Wong, Amanda E.; Businger, Steven.
(2022).
Global rainbow distribution under current and future climates. doi:10.1016/j.gloenvcha.2022.102604 [19] DOI Yao, Yuanzhi; Tian, Hanqin; Xu, Xiaofeng; Li, Ya; Pan, Shufen.
(2022).
Dynamics and controls of inland water CH4 emissions across the Conterminous United States: 1860-2019. doi:10.1016/j.watres.2022.119043 [20] DOI Anderegg, William R. L.; Wu, Chao; Acil, Nezha; Carvalhais, Nuno; Pugh, Thomas A. M.; Sadler, Jon P.; Seidl, Rupert.
(2022).
A climate risk analysis of Earth’s forests in the 21st century. doi:10.1126/science.abp9723 [21] DOI Cook, B. I.; Mankin, J. S.; Marvel, K.; Williams, A. P.; Smerdon, J. E.; Anchukaitis, K. J.
(2020).
Twenty‐First Century Drought Projections in the CMIP6 Forcing Scenarios. doi:10.1029/2019ef001461 [22] DOI Herceg, Sina; Kaaya, Ismail; Ascencio-Vásquez, Julián; Fischer, Marie; Weiß, Karl-Anders; Schebek, Liselotte.
(2022).
The Influence of Different Degradation Characteristics on the Greenhouse Gas Emissions of Silicon Photovoltaics: A Threefold Analysis. doi:10.3390/su14105843 [23] DOI Terhaar, Jens; Torres, Olivier; Bourgeois, Timothée; Kwiatkowski, Lester.
(2021).
Arctic Ocean acidification over the 21st century co-driven by anthropogenic carbon increases and freshening in the CMIP6 model ensemble. doi:10.5194/bg-18-2221-2021 [24] DOI Vrac, M.; Thao, S.; Yiou, P.
(2022).
Should Multivariate Bias Corrections of Climate Simulations Account for Changes of Rank Correlation Over Time?. doi:10.1029/2022jd036562 Is related to
[1] DOI Burke, Eleanor J.; Zhang, Yu; Krinner, Gerhard.
(2020).
Evaluating permafrost physics in the Coupled Model Intercomparison Project 6 (CMIP6) models and their sensitivity to climate change. doi:10.5194/tc-14-3155-2020 [2] DOI Weijer, W.; Cheng, W.; Garuba, O. A.; Hu, A.; Nadiga, B. T.
(2020).
CMIP6 Models Predict Significant 21st Century Decline of the Atlantic Meridional Overturning Circulation. doi:10.1029/2019gl086075 [3] DOI Rios‐Berrios, R.; Medeiros, B.; Bryan, G. H.
(2020).
Mean Climate and Tropical Rainfall Variability in Aquaplanet Simulations Using the Model for Prediction Across Scales‐Atmosphere. doi:10.1029/2020ms002102 [4] DOI Wang, Haolin; Lu, Xiao; Jacob, Daniel J.; Cooper, Owen R.; Chang, Kai-Lan; Li, Ke; Gao, Meng; Liu, Yiming; Sheng, Bosi; Wu, Kai; Wu, Tongwen; Zhang, Jie; Sauvage, Bastien; Nédélec, Philippe; Blot, Romain; Fan, Shaojia.
(2022).
Global tropospheric ozone trends, attributions, and radiative impacts in 1995–2017: an integrated analysis using aircraft (IAGOS) observations, ozonesonde, and multi-decadal chemical model simulations. doi:10.5194/acp-22-13753-2022 [5] DOI Kumar, Amit; Singh, Raghvender Pratap; Dubey, Swatantra Kumar; Gaurav, Kumar.
(2022).
Streamflow of the Betwa River under the Combined Effect of LU-LC and Climate Change. doi:10.3390/agriculture12122005 [6] DOI Herceg, Sina; Kaaya, Ismail; Ascencio-Vásquez, Julián; Fischer, Marie; Weiß, Karl-Anders; Schebek, Liselotte.
(2022).
The Influence of Different Degradation Characteristics on the Greenhouse Gas Emissions of Silicon Photovoltaics: A Threefold Analysis. doi:10.26083/tuprints-00021483 [8] DOI Yuan, Fenghui; Liu, Jianzhao; Zuo, Yunjiang; Guo, Ziyu; Wang, Nannan; Song, Changchun; Wang, Zongming; Sun, Li; Guo, Yuedong; Song, Yanyu; Mao, Dehua; Xu, Feifan; Xu, Xiaofeng.
(2020).
Rising vegetation activity dominates growing water use efficiency in the Asian permafrost region from 1900 to 2100. doi:10.1016/j.scitotenv.2020.139587 [10] DOI Meyssignac, Benoît; Chenal, Jonathan; Loeb, Norman; Guillaume-Castel, Robin; Ribes, Aurélien.
(2023).
Time-variations of the climate feedback parameter λ are associated with the Pacific Decadal Oscillation. doi:10.1038/s43247-023-00887-2 [11] DOI Bombardi, Rodrigo J.; Boos, William R.
(2021).
Explaining Globally Inhomogeneous Future Changes in Monsoons Using Simple Moist Energy Diagnostics. doi:10.1175/jcli-d-20-1012.1 [13] DOI Jönsson, Aiden R.; Bender, Frida A.-M.
(2022).
The response of hemispheric differences in Earth’s albedo to CO<sub>2</sub> forcing in coupled models and its implications for shortwave radiative feedback strength. doi:10.5194/egusphere-2022-811 [15] DOI Ascencio-Vásquez, Julián; Brecl, Kristijan; Topič, Marko.
(2019).
Methodology of Köppen-Geiger-Photovoltaic climate classification and implications to worldwide mapping of PV system performance. doi:10.1016/j.solener.2019.08.072 [16] DOI Ayarzagüena, Blanca; Charlton-Pérez, Andrew J.; Butler, Amy H.; Hitchcock, Peter; Simpson, Isla R.; Polvani, Lorenzo M.; Butchart, Neal; Gerber, Edwin P.; Gray, Lesley; Hassler, Birgit; Lin, Pu; Lott, François; Manzini, Elisa; Mizuta, Ryo; Orbe, Clara; Osprey, Scott; Saint-Martin, David; Sigmond, Michael; Taguchi, Masakazu; Volodin, Evgeny; DynVarMIP-SSW.
(2020).
Uncertainty in the response of sudden stratospheric warmings and stratosphere- troposphere coupling to quadrupled CO2 concentrations in CMIP6 models. doi:10.5194/egusphere-egu2020-11839 [17] DOI Bjarke, Nels; Barsugli, Joseph; Livneh, Ben.
(2023).
Ensemble of CMIP6 derived reference and potential evapotranspiration with radiative and advective components. doi:10.1038/s41597-023-02290-0 [18] DOI Jönsson, Aiden R.; Bender, Frida A.-M.
(2023).
The implications of maintaining Earth's hemispheric albedo symmetry for shortwave radiative feedbacks. doi:10.5194/esd-14-345-2023 [19] DOI Tsutsui, Junichi.
(2020).
Diagnosing Transient Response to CO2 Forcing in Coupled Atmosphere‐Ocean Model Experiments Using a Climate Model Emulator. doi:10.1029/2019gl085844 [22] DOI Johnson, Steven Mana‘oakamai; Watson, James R.
(2021).
Novel environmental conditions due to climate change in the world's largest marine protected areas. doi:10.1016/j.oneear.2021.10.016 [24] DOI Cao, Ruyin; Ling, Xiaofang; Liu, Licong; Wang, Weiyi; Li, Luchun; Shen, Miaogen.
(2023).
Remotely Sensed Vegetation Green-Up Onset Date on the Tibetan Plateau: Simulations and Future Predictions. doi:10.1109/jstars.2023.3310617 Is cited by
[1] DOI Fox-Kemper, B.; Hewitt, H.T.; Xiao, C.; Aðalgeirsdóttir, G.; Drijfhout, S.S.; Edwards, T.L.; Golledge, N.R.; Hemer, M.; Kopp, R.E.; Krinner, G.; Mix, A.; Notz, D.; Nowicki, S.; Nurhati, I.S.; Ruiz, L.; Sallée, J.-B.; Slangen, A.B.A.; Yu, Y.
(2023).
Ocean, Cryosphere and Sea Level Change. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change
[Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I.
Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B.
Zhou (eds.)]. doi:10.1017/9781009157896.011 [2] DOI Lee, J.-Y.; Marotzke, J.; Bala, G.; Cao, L.; Corti, S.; Dunne, J.P.; Engelbrecht, F.; Fischer, E.; Fyfe, J.C; Jones, C.; Maycock, A.; Mutemi, J.; Ndiaye, O.; Panickal, S.; Zhou,T.
(2023).
Future Global Climate: Scenario-Based Projections and Near-Term Information. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.006 [3] DOI Eyring, V.; Gillett, N.P.; Achuta Rao, K.M.; Barimalala, R.; Barreiro Parrillo, M.; Bellouin, N.; Cassou, C.; Durack, P.J.; Kosaka, Y.; McGregor, S.; Min, S.; Morgenstern, O.; Sun, Y.
(2023).
Human Influence on the Climate System. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.005 [4] DOI Doblas-Reyes, F.J.; Sörensson, A.A.; Almazroui, M.; Dosio, A.; Gutowski, W.J.; Haarsma, R.; Hamdi, R.; Hewitson, B.; Kwon, W.-T.; Lamptey, B.L.; Maraun, D.; Stephenson, T.S.; Takayabu, I.; Terray, L.; Turner, A.; Zuo, Z.
(2023).
Linking Global to Regional Climate Change. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.012 [5] DOI Seneviratne, S.I.; Zhang, X.; Adnan, M.; Badi, W.; Dereczynski, C.; Di Luca, A.; Ghosh, S.; Iskandar, I.; Kossin, J.; Lewis, S.; Otto, F.; Pinto, I.; Satoh, M.; Vicente-Serrano, S.M.; Wehner, M.; Zhou, B.
(2023).
Weather and Climate Extreme Events in a Changing Climate. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.013 [6] DOI Gutiérrez, J.M.; Jones, R.G.; Narisma, G.T.; Alves, L.M.; Amjad, M.; Gorodetskaya, I.V.; Grose, M.; Klutse, N.A.B.; Krakovska, S.; Li, J.; Martínez-Castro, D.; Mearns, L.O.; Mernild, S.H.; Ngo-Duc, T.; van den Hurk, B.; Yoon, J.-H.
(2023).
Atlas. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change[Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.021 [7] DOI Intergovernmental Panel on Climate Change (IPCC).
(2023).
Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896 [8] DOI Canadell, J.G.; Monteiro, P.M.S; Costa, M.H.; Cotrim da Cunha, L.; Cox, P.M.; Eliseev, A.V.; Henson, S.; Ishii, M.; Jaccard, S.; Koven, C.; Lohila, A.; Patra, P.K.; Piao, S.; Rogelj, J.; Syampungani, S.; Zaehle, S.; Zickfeld, K.
(2023).
Global Carbon and other Biogeochemical Cycles and Feedbacks. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.007 [9] DOI Douville, H.; Raghavan, K.; Renwick, J.; Allan, R.P.; Arias, P.A.; Barlow, M.; Cerezo-Mota, R.; Cherchi, A.; Gan, T.Y.; Gergis, J.; Jiang, D.; Khan, A.; Pokam Mba, W.; Rosenfeld, D.; Tierney, J.; Zolina, O.
(2023).
Water Cycle Changes. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.010 [10] DOI Lea, James M.; Fitt, Robert N. L.; Brough, Stephen; Carr, Georgia; Dick, Jonathan; Jones, Natasha; Webster, Richard J.
(2024).
Making climate reanalysis and CMIP6 data processing easy: two “point-and-click” cloud based user interfaces for environmental and ecological studies. doi:10.3389/fenvs.2024.1294446