Is cited by
[1] DOI Fox-Kemper, B.; Hewitt, H.T.; Xiao, C.; Aðalgeirsdóttir, G.; Drijfhout, S.S.; Edwards, T.L.; Golledge, N.R.; Hemer, M.; Kopp, R.E.; Krinner, G.; Mix, A.; Notz, D.; Nowicki, S.; Nurhati, I.S.; Ruiz, L.; Sallée, J.-B.; Slangen, A.B.A.; Yu, Y.
(2023).
Ocean, Cryosphere and Sea Level Change. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change
[Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I.
Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B.
Zhou (eds.)]. doi:10.1017/9781009157896.011 [2] DOI Lee, J.-Y.; Marotzke, J.; Bala, G.; Cao, L.; Corti, S.; Dunne, J.P.; Engelbrecht, F.; Fischer, E.; Fyfe, J.C; Jones, C.; Maycock, A.; Mutemi, J.; Ndiaye, O.; Panickal, S.; Zhou,T.
(2023).
Future Global Climate: Scenario-Based Projections and Near-Term Information. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.006 [3] DOI Eyring, V.; Gillett, N.P.; Achuta Rao, K.M.; Barimalala, R.; Barreiro Parrillo, M.; Bellouin, N.; Cassou, C.; Durack, P.J.; Kosaka, Y.; McGregor, S.; Min, S.; Morgenstern, O.; Sun, Y.
(2023).
Human Influence on the Climate System. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.005 [4] DOI Doblas-Reyes, F.J.; Sörensson, A.A.; Almazroui, M.; Dosio, A.; Gutowski, W.J.; Haarsma, R.; Hamdi, R.; Hewitson, B.; Kwon, W.-T.; Lamptey, B.L.; Maraun, D.; Stephenson, T.S.; Takayabu, I.; Terray, L.; Turner, A.; Zuo, Z.
(2023).
Linking Global to Regional Climate Change. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.012 [5] DOI Seneviratne, S.I.; Zhang, X.; Adnan, M.; Badi, W.; Dereczynski, C.; Di Luca, A.; Ghosh, S.; Iskandar, I.; Kossin, J.; Lewis, S.; Otto, F.; Pinto, I.; Satoh, M.; Vicente-Serrano, S.M.; Wehner, M.; Zhou, B.
(2023).
Weather and Climate Extreme Events in a Changing Climate. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.013 [6] DOI Gutiérrez, J.M.; Jones, R.G.; Narisma, G.T.; Alves, L.M.; Amjad, M.; Gorodetskaya, I.V.; Grose, M.; Klutse, N.A.B.; Krakovska, S.; Li, J.; Martínez-Castro, D.; Mearns, L.O.; Mernild, S.H.; Ngo-Duc, T.; van den Hurk, B.; Yoon, J.-H.
(2023).
Atlas. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change[Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.021 [7] DOI Intergovernmental Panel on Climate Change (IPCC).
(2023).
Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896 [8] DOI Douville, H.; Raghavan, K.; Renwick, J.; Allan, R.P.; Arias, P.A.; Barlow, M.; Cerezo-Mota, R.; Cherchi, A.; Gan, T.Y.; Gergis, J.; Jiang, D.; Khan, A.; Pokam Mba, W.; Rosenfeld, D.; Tierney, J.; Zolina, O.
(2023).
Water Cycle Changes. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.010 [9] DOI Lea, James M.; Fitt, Robert N. L.; Brough, Stephen; Carr, Georgia; Dick, Jonathan; Jones, Natasha; Webster, Richard J.
(2024).
Making climate reanalysis and CMIP6 data processing easy: two “point-and-click” cloud based user interfaces for environmental and ecological studies. doi:10.3389/fenvs.2024.1294446 [10] DOI Shao, Manqing; Fernando, Nelun; Zhu, John; Zhao, Gang; Kao, Shih‐Chieh; Zhao, Bingjie; Roberts, Elizabeth; Gao, Huilin.
(2023).
Estimating Future Surface Water Availability Through an Integrated Climate‐Hydrology‐Management Modeling Framework at a Basin Scale Under CMIP6 Scenarios. doi:10.1029/2022wr034099 Is referenced by
[1] DOI Seland, Øyvind; Bentsen, Mats; Seland Graff, Lise; Olivié, Dirk; Toniazzo, Thomas; Gjermundsen, Ada; Debernard, Jens Boldingh; Gupta, Alok Kumar; He, Yanchun; Kirkevåg, Alf; Schwinger, Jörg; Tjiputra, Jerry; Schancke Aas, Kjetil; Bethke, Ingo; Fan, Yuanchao; Griesfeller, Jan; Grini, Alf; Guo, Chuncheng; Ilicak, Mehmet; Hafsahl Karset, Inger Helene; Landgren, Oskar; Liakka, Johan; Onsum Moseid, Kine; Nummelin, Aleksi; Spensberger, Clemens; Tang, Hui; Zhang, Zhongshi; Heinze, Christoph; Iverson, Trond; Schulz, Michael.
(2020).
The Norwegian Earth System Model, NorESM2 – Evaluation of theCMIP6 DECK and historical simulations. doi:10.5194/gmd-2019-378 [2] DOI Tjiputra, Jerry F.; Schwinger, Jörg; Bentsen, Mats; Morée, Anne L.; Gao, Shuang; Bethke, Ingo; Heinze, Christoph; Goris, Nadine; Gupta, Alok; He, Yanchun; Olivié, Dirk; Seland, Øyvind; Schulz, Michael.
(2020).
Ocean biogeochemistry in the Norwegian Earth System Model version 2 (NorESM2). doi:10.5194/gmd-2019-347 [3] DOI Tjiputra, Jerry F.; Schwinger, Jörg; Bentsen, Mats; Morée, Anne L.; Gao, Shuang; Bethke, Ingo; Heinze, Christoph; Goris, Nadine; Gupta, Alok; He, Yan-Chun; Olivié, Dirk; Seland, Øyvind; Schulz, Michael.
(2020).
Ocean biogeochemistry in the Norwegian Earth System Model version 2 (NorESM2). doi:10.5194/gmd-13-2393-2020 [4] DOI Seland, Øyvind; Bentsen, Mats; Olivié, Dirk; Toniazzo, Thomas; Gjermundsen, Ada; Graff, Lise Seland; Debernard, Jens Boldingh; Gupta, Alok Kumar; He, Yan-Chun; Kirkevåg, Alf; Schwinger, Jörg; Tjiputra, Jerry; Aas, Kjetil Schanke; Bethke, Ingo; Fan, Yuanchao; Griesfeller, Jan; Grini, Alf; Guo, Chuncheng; Ilicak, Mehmet; Karset, Inger Helene Hafsahl; Landgren, Oskar; Liakka, Johan; Moseid, Kine Onsum; Nummelin, Aleksi; Spensberger, Clemens; Tang, Hui; Zhang, Zhongshi; Heinze, Christoph; Iversen, Trond; Schulz, Michael.
(2020).
Overview of the Norwegian Earth System Model (NorESM2) and key climate response of CMIP6 DECK, historical, and scenario simulations. doi:10.5194/gmd-13-6165-2020 [5] DOI Gier, Bettina K.; Buchwitz, Michael; Reuter, Maximilian; Cox, Peter M.; Friedlingstein, Pierre; Eyring, Veronika.
(2021).
Spatially resolved evaluation of Earth system models with satellite column-averaged CO2. doi:10.5194/egusphere-egu21-11848 [6] DOI Keeble, James; Chiodo, Gabriel; Et Al.
(2021).
Evaluating stratospheric ozone and water vapour changes in CMIP6 models from 1850 to 2100. doi:10.3929/ethz-b-000478110 [7] DOI Keeble, James; Hassler, Birgit; Banerjee, Antara; Checa-Garcia, Ramiro; Chiodo, Gabriel; Davis, Sean; Eyring, Veronika; Griffiths, Paul T.; Morgenstern, Olaf; Nowack, Peer; Zeng, Guang; Zhang, Jiankai; Bodeker, Greg; Burrows, Susannah; Cameron-Smith, Philip; Cugnet, David; Danek, Christopher; Deushi, Makoto; Horowitz, Larry W.; Kubin, Anne; Li, Lijuan; Lohmann, Gerrit; Michou, Martine; Mills, Michael J.; Nabat, Pierre; Olivié, Dirk; Park, Sungsu; Seland, Øyvind; Stoll, Jens; Wieners, Karl-Hermann; Wu, Tongwen.
(2021).
Evaluating stratospheric ozone and water vapour changes in CMIP6 models from 1850 to 2100. doi:10.5194/acp-21-5015-2021 [8] DOI Annor, Thompson; Lamptey, Benjamin; Washington, Richard.
(2022).
Assessment of the unified model in reproducing West African precipitation and temperature climatology. doi:10.1007/s00704-022-03973-1 [9] DOI Kvale, Karin; Keller, David P.; Koeve, Wolfgang; Meissner, Katrin J.; Somes, Chris; Yao, Wanxuan; Oschlies, Andreas.
(2020).
Explicit silicate cycling in the Kiel Marine Biogeochemistry Model, version 3 (KMBM3) embedded in the UVic ESCM version 2.9. doi:10.5194/gmd-2020-235 [10] DOI Su, Xiaole; Wu, Tongwen; Zhang, Jie; Zhang, Yong; Jin, Junli; Zhou, Qing; Zhang, Fang; Liu, Yiming; Zhou, Yumeng; Zhang, Lin; Turnock, Steven T.; Furtado, Kalli.
(2022).
Present-Day PM2.5 over Asia: Simulation and Uncertainty in CMIP6 ESMs. doi:10.1007/s13351-022-1202-7 [11] DOI Loechli, Morgan; Stephens, Britton B.; Commane, Roisin; Chevallier, Frederic; McKain, Kathryn; Ralph, Keeling; Morgan, Eric; Patra, Prabir K.; Sargent, Maryann; Sweeney, Colm; Keppel-Aleks, Gretchen.
(2022).
Evaluating Northern Hemisphere Growing Season Net Carbon Flux in Climate Models Using Aircraft Observations. doi:10.1002/essoar.10512001.1 [12] DOI Lalande, Mickaël; Ménégoz, Martin; Krinner, Gerhard; Naegeli, Kathrin; Wunderle, Stefan.
(2021).
Climate change in the High Mountain Asia in CMIP6. doi:10.5194/esd-2021-43 [13] DOI Jung, Christopher; Schindler, Dirk.
(2022).
Development of onshore wind turbine fleet counteracts climate change-induced reduction in global capacity factor. doi:10.1038/s41560-022-01056-z [14] DOI Vaittinada Ayar, Pradeebane; Bopp, Laurent; Christian, Jim R.; Ilyina, Tatiana; Krasting, John P.; Séférian, Roland; Tsujino, Hiroyuki; Watanabe, Michio; Yool, Andrew; Tjiputra, Jerry.
(2022).
Contrasting projections of the ENSO-driven CO<sub>2</sub> flux variability in the equatorial Pacific under high-warming scenario. doi:10.5194/esd-13-1097-2022 [16] DOI Quenum, Gandomè Mayeul Leger Davy; Nkrumah, Francis; Klutse, Nana Ama Browne; Sylla, Mouhamadou Bamba.
(2021).
Spatiotemporal Changes in Temperature and Precipitation in West Africa. Part I: Analysis with the CMIP6 Historical Dataset. doi:10.3390/w13243506 [17] DOI Kumar, Amit; Singh, Raghvender Pratap; Dubey, Swatantra Kumar; Gaurav, Kumar.
(2022).
Streamflow of the Betwa River under the Combined Effect of LU-LC and Climate Change. doi:10.3390/agriculture12122005 [18] DOI Smedsrud, Lars H.; Muilwijk, Morven; Brakstad, Ailin; Madonna, Erica; Lauvset, Siv K.; Spensberger, Clemens; Born, Andreas; Eldevik, Tor; Drange, Helge; Jeansson, Emil; Li, Camille; Olsen, Are; Skagseth, Øystein; Slater, Donald A.; Straneo, Fiamma; Våge, Kjetil; Årthun, Marius.
(2021).
Nordic Seas Heat Loss, Atlantic Inflow, and Arctic Sea Ice Cover Over the Last Century. doi:10.1029/2020rg000725 [20] DOI Loechli, Morgan; Stephens, Britton B.; Commane, Roisin; Chevallier, Frédéric; McKain, Kathryn; Keeling, Ralph F.; Morgan, Eric J.; Patra, Prabir K.; Sargent, Maryann R.; Sweeney, Colm; Keppel‐Aleks, Gretchen.
(2023).
Evaluating Northern Hemisphere Growing Season Net Carbon Flux in Climate Models Using Aircraft Observations. doi:10.1029/2022gb007520 [21] DOI Rohr, Tyler; Richardson, Anthony J.; Lenton, Andrew; Chamberlain, Matthew A.; Shadwick, Elizabeth H.
(2023).
Zooplankton grazing is the largest source of uncertainty for marine carbon cycling in CMIP6 models. doi:10.1038/s43247-023-00871-w [22] DOI Zhao, Siyi; Zhang, Jiankai; Zhang, Chongyang; Xu, Mian; Keeble, James; Wang, Zhe; Xia, Xufan.
(2022).
Evaluating Long-Term Variability of the Arctic Stratospheric Polar Vortex Simulated by CMIP6 Models. doi:10.3390/rs14194701 [23] DOI Çetin, I. I.; Yücel, I.; Yılmaz, M. T.; Önol, B.
(2024).
Historical variability of Coupled Model Intercomparison Project Version 6 (CMIP6)-driven surface winds and global reanalysis data for the Eastern Mediterranean. doi:10.1007/s00704-024-04869-y [25] DOI Gier, Bettina K.; Buchwitz, Michael; Reuter, Maximilian; Cox, Peter M.; Friedlingstein, Pierre; Eyring, Veronika.
(2020).
Spatially resolved evaluation of Earth system models with satellite column-averaged CO&lt;sub&gt;2&lt;/sub&gt;. doi:10.5194/bg-17-6115-2020 [27] DOI Annor, Thompson; Ackon, Apphia Tetteh; James, Rachel; Dyer, Ellen; Webb, Thomas; Pokam, Wilfried Mba; Kuete Gouandjo, Giresse; Washington, Richard; Abiodun, Babatunde J.
(2023).
Heat band, rain band and heat low migration: process-based evaluation of some CMIP6 GCMs over West Africa. doi:10.1007/s00382-023-06930-4 [28] DOI Kouki, Kerttu; Räisänen, Petri; Luojus, Kari; Luomaranta, Anna; Riihelä, Aku.
(2022).
Evaluation of Northern Hemisphere snow water equivalent in CMIP6 models during 1982–2014. doi:10.5194/tc-16-1007-2022 [29] DOI Zhou, Yumeng; Wu, Tongwen; Zhou, Yang; Zhang, Jie; Zhang, Fang; Su, Xiaole; Jie, Weihua; Zhao, He; Zhang, Yanwu; Wang, Jun.
(2023).
Can global warming bring more dust?. doi:10.1007/s00382-023-06706-w [31] DOI Vogel, Annika; Alessa, Ghazi; Scheele, Robert; Weber, Lisa; Dubovik, Oleg; North, Peter; Fiedler, Stephanie.
(2022).
Uncertainty in Aerosol Optical Depth From Modern Aerosol‐Climate Models, Reanalyses, and Satellite Products. doi:10.1029/2021jd035483 [33] DOI Olusegun, Christiana; Ojo, Olusola; Olusola, Adeyemi; Ogunjo, Samuel.
(2023).
Solar radiation variability across Nigeria’s climatic zones: a validation and projection study with CORDEX, CMIP5, and CMIP6 models. doi:10.1007/s40808-023-01848-6 [34] DOI Lalande, Mickaël; Ménégoz, Martin; Krinner, Gerhard; Naegeli, Kathrin; Wunderle, Stefan.
(2021).
Climate change in the High Mountain Asia in CMIP6. doi:10.5194/esd-12-1061-2021 [35] DOI Ngavom, Zakariahou; Fotso-Nguemo, Thierry C.; Vondou, Derbetini A.; Fotso-Kamga, Gabriel; Zebaze, Sinclaire; Yepdo, Zéphirin D.; Diedhiou, Arona.
(2024).
Projected changes in population exposure to extreme precipitation events over Central Africa under the global warming levels of 1.5 °C and 2 °C: insights from CMIP6 simulations. doi:10.1007/s40808-024-02091-3 [36] DOI Rettie, Fasil M.; Gayler, Sebastian; Weber, Tobias K. D.; Tesfaye, Kindie; Streck, Thilo.
(2023).
High-resolution CMIP6 climate projections for Ethiopia using the gridded statistical downscaling method. doi:10.1038/s41597-023-02337-2 [37] DOI Smedsrud, Lars H.; Muilwijk, Morven; Brakstad, Ailin; Madonna, Erica; Lauvset, Siv K.; Spensberger, Clemens; Born, Andreas; Eldevik, Tor; Drange, Helge; Jeansson, Emil; Li, Camille; Olsen, Are; Skagseth, Øystein; Slater, Donald A; Straneo, Fiammetta; Våge, Kjetil; Årthun, Marius.
(2021).
Nordic Seas Heat Loss, Atlantic Inflow, and Arctic Sea Ice cover over the last century. doi:10.1002/essoar.10506171.2 [38] DOI Liu, Zhu; Zhang, Guoping; Ding, Jin; Xiao, Xiong.
(2022).
Biases of the Mean and Shape Properties in CMIP6 Extreme Precipitation Over Central Asia. doi:10.3389/feart.2022.918337 [39] DOI Vaittinada Ayar, Pradeebane; Tjiputra, Jerry; Bopp, Laurent; Christian, Jim R.; Ilyina, Tatiana; Krasting, John P.; Séférian, Roland; Tsujino, Hiroyuki; Watanabe, Michio; Yool, Andrew.
(2022).
Contrasting projection of the ENSO-driven CO&lt;sub&gt;2&lt;/sub&gt; flux variability in the Equatorial Pacific under high warming scenario. doi:10.5194/esd-2022-12 [40] DOI AYAR, Pradeebane VAITTINADA; Battisti, David S.; Li, Camille; King, Martin Peter; Vrac, Mathieu; Tjiputra, Jerry Fong.
(2023).
A regime view of ENSO flavours through clustering in CMIP6 models. doi:10.22541/essoar.167458065.54814300/v2 [41] DOI Zhang, Le; Xue, Z. George.
(2022).
A Numerical reassessment of the Gulf of Mexico carbon system in connection with the Mississippi River and global ocean. doi:10.5194/bg-19-4589-2022 [42] DOI Rodgers, Keith B.; Schwinger, Jörg; Fassbender, Andrea J.; Landschützer, Peter; Yamaguchi, Ryohei; Frenzel, Hartmut; Stein, Karl; Müller, Jens Daniel; Goris, Nadine; Sharma, Sahil; Bushinsky, Seth; Chau, Thi‐Tuyet‐Trang; Gehlen, Marion; Gallego, M. Angeles; Gloege, Lucas; Gregor, Luke; Gruber, Nicolas; Hauck, Judith; Iida, Yosuke; Ishii, Masao; Keppler, Lydia; Kim, Ji‐Eun; Schlunegger, Sarah; Tjiputra, Jerry; Toyama, Katsuya; Vaittinada Ayar, Pradeebane; Velo, Antón.
(2023).
Seasonal Variability of the Surface Ocean Carbon Cycle: A Synthesis. doi:10.1029/2023gb007798 [43] DOI Hinrichs, Claudia; Hauck, Judith.
(2022).
Report on skill of CMIP6 models to simulate alkalinity and improved parameterizations for large scale alkalinity distribution. doi:10.3289/oceannets_d4.4 [47] DOI Bhattacharya, Biswarup; Mohanty, Sachiko; Singh, Charu.
(2022).
Assessment of the potential of CMIP6 models in simulating the sea surface temperature variability over the tropical Indian Ocean. doi:10.1007/s00704-022-03952-6 [48] DOI Wong, Suki C. K.; McKinley, Galen A.; Seager, Richard.
(2022).
Equatorial Pacific pCO 2 Interannual Variability in CMIP6
Models. doi:10.7916/dzbv-zs62 [49] DOI Hulkkonen, Mira; Mielonen, Tero; Leppänen, Saara; Laakso, Anton; Kokkola, Harri.
(2024).
The role of tailored climate scenario information for the
perceived legitimacy of climate policy paths. doi:10.21203/rs.3.rs-3691918/v1 [50] DOI Komelo, Crépin K.; Fotso-Nguemo, Thierry C.; Ngavom, Zakariahou; Dessacka, Abdon K.; Taguela, Thierry N.; Yepdo, Zéphirin D.; Nghonda, Jean P.; Diedhiou, Arona; Monkam, David; Tchawoua, Clément.
(2024).
Evaluation of extreme precipitation events as simulated by CMIP6 models over Central Africa: Spatial patterns. doi:10.1007/s00704-024-05198-w [51] DOI Sun, Zhe; Archibald, Alexander.
(2021).
Multi-stage Ensemble-learning-based Model Fusion for Surface Ozone Simulations: A Focus on CMIP6 Models. doi:10.1002/essoar.10507571.1 [52] DOI Kouki, Kerttu; Räisänen, Petri; Luojus, Kari; Luomaranta, Anna; Riihelä, Aku.
(2022).
Evaluation of Northern Hemisphere snow water equivalent in CMIP6 models during 1982-2014. doi:10.5194/ems2022-447 [53] DOI Gao, Qinggang; Capron, Emilie; Sime, Louise C.; Rhodes, Rachael H.; Sivankutty, Rahul; Zhang, Xu; Otto-Bliesner, Bette L.; Werner, Martin.
(2024).
Assessment of the southern polar and subpolar warming in the PMIP4 Last Interglacial simulations using paleoclimate data syntheses. doi:10.5194/egusphere-2024-1261 [54] DOI Kvale, Karin; Keller, David P.; Koeve, Wolfgang; Meissner, Katrin J.; Somes, Christopher J.; Yao, Wanxuan; Oschlies, Andreas.
(2021).
Explicit silicate cycling in the Kiel Marine Biogeochemistry Model version 3 (KMBM3) embedded in the UVic ESCM version 2.9. doi:10.5194/gmd-14-7255-2021 [55] DOI Linke, Olivia; Quaas, Johannes; Baumer, Finja; Becker, Sebastian; Chylik, Jan; Dahlke, Sandro; Ehrlich, André; Handorf, Dörthe; Jacobi, Christoph; Kalesse-Los, Heike; Lelli, Luca; Mehrdad, Sina; Neggers, Roel A. J.; Riebold, Johannes; Saavedra Garfias, Pablo; Schnierstein, Niklas; Shupe, Matthew D.; Smith, Chris; Spreen, Gunnar; Verneuil, Baptiste; Vinjamuri, Kameswara S.; Vountas, Marco; Wendisch, Manfred.
(2023).
Constraints on simulated past Arctic amplification and lapse-rate feedback from observations. doi:10.5194/acp-2022-836 [57] DOI Vaittinada Ayar, Pradeebane; Battisti, David; Li, Camille; King, Martin; Vrac, Mathieu; Tjiputra, Jerry.
(2024).
A Regime View of ENSO Flavors Through Clustering in CMIP6 Models. doi:10.5194/egusphere-egu24-12936 [58] DOI Hinrichs, Claudia; Köhler, Peter; Völker, Christoph; Hauck, Judith.
(2023).
Alkalinity biases in CMIP6 Earth system models and implications for simulated CO2 drawdown via artificial alkalinity enhancement. doi:10.5194/bg-20-3717-2023 [59] DOI Diamond, Rachel; Sime, Louise C.; Holmes, Caroline R.; Schroeder, David.
(2024).
CMIP6 Models Rarely Simulate Antarctic Winter Sea‐Ice Anomalies as Large as Observed in 2023. doi:10.1029/2024gl109265 [60] DOI Potts, Keith Alan.
(2023).
At Least Nine CMIP6 Climate Models fail the Historical Experiment Test because they do not accurately reproduce the known occurrence of ENSO events and must be withdrawn. doi:10.22541/essoar.169686254.43735786/v1