WCRP CMIP6 LUMIP MIROC MIROC-ES2L

Hajima, Tomohiro et al.

Experiment
Summary
These data include all datasets published for 'CMIP6.LUMIP.MIROC.MIROC-ES2L' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The MIROC-ES2L climate model, released in 2018, includes the following components: aerosol: SPRINTARS6.0, atmos: CCSR AGCM (T42; 128 x 64 longitude/latitude; 40 levels; top level 3 hPa), land: MATSIRO6.0+VISIT-e ver.1.0, ocean: COCO4.9 (tripolar primarily 1deg; 360 x 256 longitude/latitude; 63 levels; top grid cell 0-2 m), ocnBgchem: OECO ver.2.0; NPZD-type with C/N/P/Fe/O cycles, seaIce: COCO4.9. The model was run by the JAMSTEC (Japan Agency for Marine-Earth Science and Technology, Kanagawa 236-0001, Japan), AORI (Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba 277-8564, Japan), NIES (National Institute for Environmental Studies, Ibaraki 305-8506, Japan), and R-CCS (RIKEN Center for Computational Science, Hyogo 650-0047, Japan) (MIROC) in native nominal resolutions: aerosol: 500 km, atmos: 500 km, land: 500 km, ocean: 100 km, ocnBgchem: 100 km, seaIce: 100 km.

Individuals using the data must abide by terms of use for CMIP6 data (https://pcmdi.llnl.gov/CMIP6/TermsOfUse). The original license restrictions on these datasets were recorded as global attributes in the data files, but these may have been subsequently updated.
Project
CMIP6 (WCRP Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets)
Contact
Dr. Akihiko Ito (
 itoh@nullnies.go.jp
)

Dr. Tomohiro Hajima (
 hajima@nulljamstec.go.jp
)
Location(s)
global
Spatial Coverage
Longitude 0 to 360 Latitude -90 to 90
Temporal Coverage
1850-01-01 to 2100-12-16 (gregorian)
Use constraints
Creative Commons Attribution 4.0 International (CC BY 4.0) (https://creativecommons.org/licenses/by/4.0/)
Data Catalog
World Data Center for Climate
Size
10.81 GiB (11602309705 Byte)
Format
NetCDF
Status
completely archived
Creation Date
Future Review Date
2033-06-12
Cite as
Hajima, Tomohiro; Ito, Akihiko; Abe, Manabu; Arakawa, Osamu; Suzuki, Tatsuo; Komuro, Yoshiki; Ogura, Tomoo; Ogochi, Koji; Watanabe, Michio; Yamamoto, Akitomo; Tatebe, Hiroaki; Noguchi, Maki A.; Ohgaito, Rumi; Ito, Akinori; Yamazaki, Dai; Takata, Kumiko; Watanabe, Shingo; Kawamiya, Michio; Tachiiri, Kaoru (2023). MIROC MIROC-ES2L model output prepared for CMIP6 LUMIP. World Data Center for Climate (WDCC) at DKRZ. https://www.wdc-climate.de/ui/entry?acronym=C6_5220671

BibTeX RIS
Description
as consistent as the model(s) MIROC-ES2L
Contact typePersonORCIDOrganization
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Is part of

[1] DOI Hajima, Tomohiro; Ito, Akihiko; Abe, Manabu; Arakawa, Osamu; Suzuki, Tatsuo; Komuro, Yoshiki; Ogura, Tomoo; Ogochi, Koji; Watanabe, Michio; Yamamoto, Akitomo; Tatebe, Hiroaki; Noguchi, Maki A.; Ohgaito, Rumi; Ito, Akinori; Yamazaki, Dai; Takata, Kumiko; Watanabe, Shingo; Kawamiya, Michio; Tachiiri, Kaoru. (2019). MIROC MIROC-ES2L model output prepared for CMIP6 LUMIP. doi:10.22033/ESGF/CMIP6.922

Is referenced by

[1] DOI Terhaar, Jens; Torres, Olivier; Bourgeois, Timothée; Kwiatkowski, Lester. (2021). Arctic Ocean acidification over the 21st century co-driven by anthropogenic carbon increases and freshening in the CMIP6 model ensemble. doi:10.5194/egusphere-egu21-7937
[2] DOI Watanabe, Michio; Tatebe, Hiroaki; Koyama, Hiroshi; Hajima, Tomohiro; Watanabe, Masahiro; Kawamiya, Michio. (2020). Importance of El Niño reproducibility for reconstructing historical CO<sub>2</sub> flux variations in the equatorial Pacific. doi:10.5194/os-2020-32
[3] DOI Su, Xiaole; Wu, Tongwen; Zhang, Jie; Zhang, Yong; Jin, Junli; Zhou, Qing; Zhang, Fang; Liu, Yiming; Zhou, Yumeng; Zhang, Lin; Turnock, Steven T.; Furtado, Kalli. (2022). Present-Day PM2.5 over Asia: Simulation and Uncertainty in CMIP6 ESMs. doi:10.1007/s13351-022-1202-7
[4] DOI Lalande, Mickaël; Ménégoz, Martin; Krinner, Gerhard; Naegeli, Kathrin; Wunderle, Stefan. (2021). Climate change in the High Mountain Asia in CMIP6. doi:10.5194/esd-2021-43
[5] DOI Vaittinada Ayar, Pradeebane; Bopp, Laurent; Christian, Jim R.; Ilyina, Tatiana; Krasting, John P.; Séférian, Roland; Tsujino, Hiroyuki; Watanabe, Michio; Yool, Andrew; Tjiputra, Jerry. (2022). Contrasting projections of the ENSO-driven CO<sub>2</sub> flux variability in the equatorial Pacific under high-warming scenario. doi:10.5194/esd-13-1097-2022
[6] DOI O'ishi, Ryouta; Chan, Wing-Le; Abe-Ouchi, Ayako; Sherriff-Tadano, Sam; Ohgaito, Rumi; Yoshimori, Masakazu. (2021). PMIP4/CMIP6 last interglacial simulations using three different versions of MIROC: importance of vegetation. doi:10.5194/cp-17-21-2021
[7] DOI O'ishi, Ryouta; Chan, Wing-Le; Abe-Ouchi, Ayako; Sherriff-Tadano, Sam; Ohgaito, Rumi; Yoshimori, Masakazu. (2021). PMIP4/CMIP6 last interglacial simulations using three different versions of MIROC: importance of vegetation. doi:10.5194/egusphere-egu21-3792
[8] DOI Watanabe, Michio; Tatebe, Hiroaki; Koyama, Hiroshi; Hajima, Tomohiro; Watanabe, Masahiro; Kawamiya, Michio. (2020). Importance of El Niño reproducibility for reconstructing historical CO&amp;lt;sub&amp;gt;2&amp;lt;/sub&amp;gt; flux variations in the equatorial Pacific. doi:10.5194/os-16-1431-2020
[9] DOI Sohail, Taimoor; Zika, Jan D.; Irving, Damien B.; Church, John A. (2022). Observed poleward freshwater transport since 1970. doi:10.1038/s41586-021-04370-w
[10] DOI de Vries, Iris Elisabeth; Sippel, Sebastian; Pendergrass, Angeline Greene; Knutti, Reto. (2023). Robust global detection of forced changes in mean and extreme precipitation despite observational disagreement on the magnitude of change. doi:10.5194/esd-14-81-2023
[11] DOI Terhaar, Jens; Torres, Olivier; Bourgeois, Timothée; Kwiatkowski, Lester. (2020). Arctic Ocean acidification over the 21st century co-driven by anthropogenic carbon increases and freshening in the CMIP6 model ensemble. doi:10.5194/bg-2020-456
[12] DOI Seltzer, Alan M.; Blard, Pierre-Henri; Sherwood, Steven C.; Kageyama, Masa. (2023). Terrestrial amplification of past, present, and future climate change. doi:10.1126/sciadv.adf8119
[13] DOI Villamayor, J.; Khodri, M.; Fang, S.‐W.; Jungclaus, J. H.; Timmreck, C.; Zanchettin, D. (2023). Sahel Droughts Induced by Large Volcanic Eruptions Over the Last Millennium in PMIP4/Past1000 Simulations. doi:10.1029/2022gl101478
[14] DOI Nyairo, Risper; Machimura, Takashi. (2020). Potential Effects of Climate and Human Influence Changes on Range and Diversity of Nine Fabaceae Species and Implications for Nature’s Contribution to People in Kenya. doi:10.3390/cli8100109
[15] DOI O'ishi, Ryouta; Chan, Wing-Le; Abe-Ouchi, Ayako; Sherriff-Tadano, Sam; Ohgaito, Rumi. (2020). PMIP4/CMIP6 Last Interglacial simulations using different versions of MIROC, with and without vegetation feedback. doi:10.5194/cp-2019-172
[16] DOI Ditkovsky, Sam; Resplandy, Laure; Busecke, Julius. (2023). Unique ocean circulation pathways reshape the Indian Ocean oxygen minimum zone with warming. doi:10.5194/egusphere-2023-1082
[17] DOI Zhou, Yumeng; Wu, Tongwen; Zhou, Yang; Zhang, Jie; Zhang, Fang; Su, Xiaole; Jie, Weihua; Zhao, He; Zhang, Yanwu; Wang, Jun. (2023). Can global warming bring more dust?. doi:10.1007/s00382-023-06706-w
[18] DOI Linke, Olivia; Quaas, Johannes; Baumer, Finja; Becker, Sebastian; Chylik, Jan; Dahlke, Sandro; Ehrlich, André; Handorf, Dörthe; Jacobi, Christoph; Kalesse-Los, Heike; Lelli, Luca; Mehrdad, Sina; Neggers, Roel A. J.; Riebold, Johannes; Saavedra Garfias, Pablo; Schnierstein, Niklas; Shupe, Matthew D.; Smith, Chris; Spreen, Gunnar; Verneuil, Baptiste; Vinjamuri, Kameswara S.; Vountas, Marco; Wendisch, Manfred. (2023). Constraints on simulated past Arctic amplification and lapse rate feedback from observations. doi:10.5194/acp-23-9963-2023
[19] DOI Gnanadesikan, Anand. (2023). Comment on egusphere-2023-1082. doi:10.5194/egusphere-2023-1082-rc2
[20] DOI Álvarez-Holguín, Alan; Morales-Nieto, Carlos Raúl; Corrales-Lerma, Raúl; Prieto-Amparán, Jesús Alejandro; Villarreal-Guerrero, Federico; Sánchez-Gutiérrez, Ricardo Alonso. (2021). Genetic structure and temporal environmental niche dynamics of sideoats grama [Bouteloua curtipendula (Michx.) Torr.] populations in Mexico. doi:10.1371/journal.pone.0254566
[21] DOI Fang, Shih‐Wei; Khodri, Myriam; Timmreck, Claudia; Zanchettin, Davide; Jungclaus, Johann. (2021). Disentangling Internal and External Contributions to Atlantic Multidecadal Variability Over the Past Millennium. doi:10.1029/2021gl095990
[22] DOI Vogel, Annika; Alessa, Ghazi; Scheele, Robert; Weber, Lisa; Dubovik, Oleg; North, Peter; Fiedler, Stephanie. (2022). Uncertainty in Aerosol Optical Depth From Modern Aerosol‐Climate Models, Reanalyses, and Satellite Products. doi:10.1029/2021jd035483
[23] DOI Wong, Suki Cheuk-Kiu; McKinley, Galen A; Seager, Richard. (2022). Equatorial Pacific pCO2 Interannual Variability in CMIP6 Models. doi:10.1002/essoar.10512730.1
[24] DOI Lalande, Mickaël; Ménégoz, Martin; Krinner, Gerhard; Naegeli, Kathrin; Wunderle, Stefan. (2021). Climate change in the High Mountain Asia in CMIP6. doi:10.5194/esd-12-1061-2021
[25] DOI Paçal, Aytaç; Hassler, Birgit; Weigel, Katja; Kurnaz, M. Levent; Wehner, Michael F.; Eyring, Veronika. (2023). Detecting Extreme Temperature Events Using Gaussian Mixture Models. doi:10.1029/2023jd038906
[26] DOI Gooya, Parsa; Swart, Neil C.; Hamme, Roberta C. (2022). Supplementary material to "Time varying changes and uncertainties in the CMIP6 ocean carbon sink from global to regional to local scale". doi:10.5194/esd-2022-19-supplement
[27] DOI Vaittinada Ayar, Pradeebane; Tjiputra, Jerry; Bopp, Laurent; Christian, Jim R.; Ilyina, Tatiana; Krasting, John P.; Séférian, Roland; Tsujino, Hiroyuki; Watanabe, Michio; Yool, Andrew. (2022). Contrasting projection of the ENSO-driven CO&amp;lt;sub&amp;gt;2&amp;lt;/sub&amp;gt; flux variability in the Equatorial Pacific under high warming scenario. doi:10.5194/esd-2022-12
[28] DOI Sellevold, Raymond; Vizcaino, Miren. (2021). First Application of Artificial Neural Networks to Estimate 21st Century Greenland Ice Sheet Surface Melt. doi:10.1029/2021gl092449
[29] DOI Rodgers, Keith B.; Schwinger, Jörg; Fassbender, Andrea J.; Landschützer, Peter; Yamaguchi, Ryohei; Frenzel, Hartmut; Stein, Karl; Müller, Jens Daniel; Goris, Nadine; Sharma, Sahil; Bushinsky, Seth; Chau, Thi‐Tuyet‐Trang; Gehlen, Marion; Gallego, M. Angeles; Gloege, Lucas; Gregor, Luke; Gruber, Nicolas; Hauck, Judith; Iida, Yosuke; Ishii, Masao; Keppler, Lydia; Kim, Ji‐Eun; Schlunegger, Sarah; Tjiputra, Jerry; Toyama, Katsuya; Vaittinada Ayar, Pradeebane; Velo, Antón. (2023). Seasonal Variability of the Surface Ocean Carbon Cycle: A Synthesis. doi:10.1029/2023gb007798
[30] DOI Lalande, Mickaël. (2021). Reply on RC1. doi:10.5194/esd-2021-43-ac1
[31] DOI Lalande, Mickaël. (2021). Reply on RC2. doi:10.5194/esd-2021-43-ac2
[32] DOI Wong, S. C. K.; McKinley, G. A.; Seager, R. (2022). Equatorial Pacific pCO2 interannual variability in CMIP6 models. doi:10.1029/2022JG007243
[33] DOI Wong, Suki C. K.; McKinley, Galen A.; Seager, Richard. (2022). Equatorial Pacific pCO 2 Interannual Variability in CMIP6 Models. doi:10.7916/dzbv-zs62
[34] DOI Hulkkonen, Mira; Mielonen, Tero; Leppänen, Saara; Laakso, Anton; Kokkola, Harri. (2024). The role of tailored climate scenario information for the perceived legitimacy of climate policy paths. doi:10.21203/rs.3.rs-3691918/v1
[35] DOI de Vries, Iris Elisabeth; Sippel, Sebastian; Pendergrass, Angeline Greene; Knutti, Reto. (2022). Robust global detection of forced changes in mean and extreme precipitation despite observational disagreement on the magnitude of change. doi:10.5194/egusphere-2022-568
[36] DOI Lai, En Ning; Wang-Erlandsson, Lan; Virkki, Vili; Porkka, Miina; van der Ent, Ruud J. (2023). Root zone soil moisture in over 25 % of global land permanently beyond pre-industrial variability as early as 2050 without climate policy. doi:10.5194/hess-27-3999-2023
[37] DOI Fang, Shih-Wei; Khodri, Myriam; Timmreck, Claudia; Zanchettin, Davide; Jungclaus, Johann. (2022). Disentangling Internal and External Contribution to Atlantic Multidecadal Variability over Past Millennium. doi:10.5194/egusphere-egu22-9547
[38] DOI Linke, Olivia; Quaas, Johannes; Baumer, Finja; Becker, Sebastian; Chylik, Jan; Dahlke, Sandro; Ehrlich, André; Handorf, Dörthe; Jacobi, Christoph; Kalesse-Los, Heike; Lelli, Luca; Mehrdad, Sina; Neggers, Roel A. J.; Riebold, Johannes; Saavedra Garfias, Pablo; Schnierstein, Niklas; Shupe, Matthew D.; Smith, Chris; Spreen, Gunnar; Verneuil, Baptiste; Vinjamuri, Kameswara S.; Vountas, Marco; Wendisch, Manfred. (2023). Constraints on simulated past Arctic amplification and lapse-rate feedback from observations. doi:10.5194/acp-2022-836
[39] DOI PAÇAL, Aytaç; Hassler, Birgit; Weigel, Katja; Kurnaz, Mehmet Levent; Wehner, Michael F; Eyring, Veronika. (2023). Detecting Extreme Temperature Events Using Gaussian Mixture Models. doi:10.22541/essoar.168275876.64237989/v1
[40] DOI Ditkovsky, Sam; Resplandy, Laure; Busecke, Julius. (2023). Unique ocean circulation pathways reshape the Indian Ocean oxygen minimum zone with warming. doi:10.5194/bg-20-4711-2023
[41] DOI Rodgers, Keith B.; Aumont, Olivier; Toyama, Katsuya; Resplandy, Laure; Ishii, Masao; Nakano, Toshiya; Sasano, Daisuke; Bianchi, Daniele; Yamaguchi, Ryohei. (2024). Low-latitude mesopelagic nutrient recycling controls productivity and export. doi:10.1038/s41586-024-07779-1

References

[1] DOI Hajima, Tomohiro; Watanabe, Michio; Yamamoto, Akitomo; Tatebe, Hiroaki; Noguchi, Maki A.; Abe, Manabu; Ohgaito, Rumi; Ito, Akinori; Yamazaki, Dai; Okajima, Hideki; Ito, Akihiko; Takata, Kumiko; Ogochi, Koji; Watanabe, Shingo; Kawamiya, Michio. (2020). Development of the MIROC-ES2L Earth system model and the evaluation of biogeochemical processes and feedbacks. doi:10.5194/gmd-13-2197-2020

Is related to

[1] DOI Fox-Kemper, B.; Hewitt, H.T.; Xiao, C.; Aðalgeirsdóttir, G.; Drijfhout, S.S.; Edwards, T.L.; Golledge, N.R.; Hemer, M.; Kopp, R.E.; Krinner, G.; Mix, A.; Notz, D.; Nowicki, S.; Nurhati, I.S.; Ruiz, L.; Sallée, J.-B.; Slangen, A.B.A.; Yu, Y. (2023). Ocean, Cryosphere and Sea Level Change. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.011
[2] DOI Turnock, Steven T.; Allen, Robert J.; Andrews, Martin; Bauer, Susanne E.; Deushi, Makoto; Emmons, Louisa; Good, Peter; Horowitz, Larry; John, Jasmin G.; Michou, Martine; Nabat, Pierre; Naik, Vaishali; Neubauer, David; O'Connor, Fiona M.; Olivié, Dirk; Oshima, Naga; Schulz, Michael; Sellar, Alistair; Shim, Sungbo; Takemura, Toshihiko; Tilmes, Simone; Tsigaridis, Kostas; Wu, Tongwen; Zhang, Jie. (2020). Historical and future changes in air pollutants from CMIP6 models. doi:10.5194/acp-20-14547-2020
[3] DOI Terhaar, Jens; Torres, Olivier; Bourgeois, Timothée; Kwiatkowski, Lester. (2021). Arctic Ocean acidification over the 21st century co-driven by anthropogenic carbon increases and freshening in the CMIP6 model ensemble. doi:10.5194/bg-18-2221-2021
[4] DOI AYAR, Pradeebane VAITTINADA; Battisti, David S.; Li, Camille; King, Martin Peter; Vrac, Mathieu; Tjiputra, Jerry Fong. (2023). A regime view of ENSO flavours through clustering in CMIP6 models. doi:10.22541/essoar.167458065.54814300/v2

Attached Dataset Groups ( 3 )

Search on group level...Details for selected entry
[Entry acronym: C6_5220671] [Entry id: 5220671]