Is referenced by
[1] DOI Terhaar, Jens; Torres, Olivier; Bourgeois, Timothée; Kwiatkowski, Lester.
(2021).
Arctic Ocean acidification over the 21st century co-driven by anthropogenic carbon increases and freshening in the CMIP6 model ensemble. doi:10.5194/egusphere-egu21-7937 [2] DOI Watanabe, Michio; Tatebe, Hiroaki; Koyama, Hiroshi; Hajima, Tomohiro; Watanabe, Masahiro; Kawamiya, Michio.
(2020).
Importance of El Niño reproducibility for reconstructing historical CO<sub>2</sub> flux variations in the equatorial Pacific. doi:10.5194/os-2020-32 [3] DOI Su, Xiaole; Wu, Tongwen; Zhang, Jie; Zhang, Yong; Jin, Junli; Zhou, Qing; Zhang, Fang; Liu, Yiming; Zhou, Yumeng; Zhang, Lin; Turnock, Steven T.; Furtado, Kalli.
(2022).
Present-Day PM2.5 over Asia: Simulation and Uncertainty in CMIP6 ESMs. doi:10.1007/s13351-022-1202-7 [4] DOI Lalande, Mickaël; Ménégoz, Martin; Krinner, Gerhard; Naegeli, Kathrin; Wunderle, Stefan.
(2021).
Climate change in the High Mountain Asia in CMIP6. doi:10.5194/esd-2021-43 [5] DOI Vaittinada Ayar, Pradeebane; Bopp, Laurent; Christian, Jim R.; Ilyina, Tatiana; Krasting, John P.; Séférian, Roland; Tsujino, Hiroyuki; Watanabe, Michio; Yool, Andrew; Tjiputra, Jerry.
(2022).
Contrasting projections of the ENSO-driven CO<sub>2</sub> flux variability in the equatorial Pacific under high-warming scenario. doi:10.5194/esd-13-1097-2022 [6] DOI O'ishi, Ryouta; Chan, Wing-Le; Abe-Ouchi, Ayako; Sherriff-Tadano, Sam; Ohgaito, Rumi; Yoshimori, Masakazu.
(2021).
PMIP4/CMIP6 last interglacial simulations using three different versions of MIROC: importance of vegetation. doi:10.5194/cp-17-21-2021 [7] DOI O'ishi, Ryouta; Chan, Wing-Le; Abe-Ouchi, Ayako; Sherriff-Tadano, Sam; Ohgaito, Rumi; Yoshimori, Masakazu.
(2021).
PMIP4/CMIP6 last interglacial simulations using three different versions of MIROC: importance of vegetation. doi:10.5194/egusphere-egu21-3792 [8] DOI Watanabe, Michio; Tatebe, Hiroaki; Koyama, Hiroshi; Hajima, Tomohiro; Watanabe, Masahiro; Kawamiya, Michio.
(2020).
Importance of El Niño reproducibility for reconstructing historical CO&lt;sub&gt;2&lt;/sub&gt; flux variations in the equatorial Pacific. doi:10.5194/os-16-1431-2020 [10] DOI de Vries, Iris Elisabeth; Sippel, Sebastian; Pendergrass, Angeline Greene; Knutti, Reto.
(2023).
Robust global detection of forced changes in mean and extreme precipitation despite observational disagreement on the magnitude of change. doi:10.5194/esd-14-81-2023 [11] DOI Terhaar, Jens; Torres, Olivier; Bourgeois, Timothée; Kwiatkowski, Lester.
(2020).
Arctic Ocean acidification over the 21st century co-driven by anthropogenic carbon increases and freshening in the CMIP6 model ensemble. doi:10.5194/bg-2020-456 [12] DOI Seltzer, Alan M.; Blard, Pierre-Henri; Sherwood, Steven C.; Kageyama, Masa.
(2023).
Terrestrial amplification of past, present, and future climate change. doi:10.1126/sciadv.adf8119 [13] DOI Villamayor, J.; Khodri, M.; Fang, S.‐W.; Jungclaus, J. H.; Timmreck, C.; Zanchettin, D.
(2023).
Sahel Droughts Induced by Large Volcanic Eruptions Over the Last Millennium in PMIP4/Past1000 Simulations. doi:10.1029/2022gl101478 [14] DOI Nyairo, Risper; Machimura, Takashi.
(2020).
Potential Effects of Climate and Human Influence Changes on Range and Diversity of Nine Fabaceae Species and Implications for Nature’s Contribution to People in Kenya. doi:10.3390/cli8100109 [15] DOI O'ishi, Ryouta; Chan, Wing-Le; Abe-Ouchi, Ayako; Sherriff-Tadano, Sam; Ohgaito, Rumi.
(2020).
PMIP4/CMIP6 Last Interglacial simulations using different versions of MIROC, with and without vegetation feedback. doi:10.5194/cp-2019-172 [16] DOI Ditkovsky, Sam; Resplandy, Laure; Busecke, Julius.
(2023).
Unique ocean circulation pathways reshape the Indian Ocean oxygen minimum zone with warming. doi:10.5194/egusphere-2023-1082 [17] DOI Zhou, Yumeng; Wu, Tongwen; Zhou, Yang; Zhang, Jie; Zhang, Fang; Su, Xiaole; Jie, Weihua; Zhao, He; Zhang, Yanwu; Wang, Jun.
(2023).
Can global warming bring more dust?. doi:10.1007/s00382-023-06706-w [18] DOI Linke, Olivia; Quaas, Johannes; Baumer, Finja; Becker, Sebastian; Chylik, Jan; Dahlke, Sandro; Ehrlich, André; Handorf, Dörthe; Jacobi, Christoph; Kalesse-Los, Heike; Lelli, Luca; Mehrdad, Sina; Neggers, Roel A. J.; Riebold, Johannes; Saavedra Garfias, Pablo; Schnierstein, Niklas; Shupe, Matthew D.; Smith, Chris; Spreen, Gunnar; Verneuil, Baptiste; Vinjamuri, Kameswara S.; Vountas, Marco; Wendisch, Manfred.
(2023).
Constraints on simulated past Arctic amplification and lapse rate feedback from observations. doi:10.5194/acp-23-9963-2023 [20] DOI Álvarez-Holguín, Alan; Morales-Nieto, Carlos Raúl; Corrales-Lerma, Raúl; Prieto-Amparán, Jesús Alejandro; Villarreal-Guerrero, Federico; Sánchez-Gutiérrez, Ricardo Alonso.
(2021).
Genetic structure and temporal environmental niche dynamics of sideoats grama [Bouteloua curtipendula (Michx.) Torr.] populations in Mexico. doi:10.1371/journal.pone.0254566 [21] DOI Fang, Shih‐Wei; Khodri, Myriam; Timmreck, Claudia; Zanchettin, Davide; Jungclaus, Johann.
(2021).
Disentangling Internal and External Contributions to Atlantic Multidecadal Variability Over the Past Millennium. doi:10.1029/2021gl095990 [22] DOI Vogel, Annika; Alessa, Ghazi; Scheele, Robert; Weber, Lisa; Dubovik, Oleg; North, Peter; Fiedler, Stephanie.
(2022).
Uncertainty in Aerosol Optical Depth From Modern Aerosol‐Climate Models, Reanalyses, and Satellite Products. doi:10.1029/2021jd035483 [24] DOI Lalande, Mickaël; Ménégoz, Martin; Krinner, Gerhard; Naegeli, Kathrin; Wunderle, Stefan.
(2021).
Climate change in the High Mountain Asia in CMIP6. doi:10.5194/esd-12-1061-2021 [25] DOI Paçal, Aytaç; Hassler, Birgit; Weigel, Katja; Kurnaz, M. Levent; Wehner, Michael F.; Eyring, Veronika.
(2023).
Detecting Extreme Temperature Events Using Gaussian Mixture Models. doi:10.1029/2023jd038906 [26] DOI Gooya, Parsa; Swart, Neil C.; Hamme, Roberta C.
(2022).
Supplementary material to "Time varying changes and uncertainties in the CMIP6 ocean carbon sink from global to regional to local scale". doi:10.5194/esd-2022-19-supplement [27] DOI Vaittinada Ayar, Pradeebane; Tjiputra, Jerry; Bopp, Laurent; Christian, Jim R.; Ilyina, Tatiana; Krasting, John P.; Séférian, Roland; Tsujino, Hiroyuki; Watanabe, Michio; Yool, Andrew.
(2022).
Contrasting projection of the ENSO-driven CO&lt;sub&gt;2&lt;/sub&gt; flux variability in the Equatorial Pacific under high warming scenario. doi:10.5194/esd-2022-12 [28] DOI Sellevold, Raymond; Vizcaino, Miren.
(2021).
First Application of Artificial Neural Networks to Estimate 21st Century Greenland Ice Sheet Surface Melt. doi:10.1029/2021gl092449 [29] DOI Rodgers, Keith B.; Schwinger, Jörg; Fassbender, Andrea J.; Landschützer, Peter; Yamaguchi, Ryohei; Frenzel, Hartmut; Stein, Karl; Müller, Jens Daniel; Goris, Nadine; Sharma, Sahil; Bushinsky, Seth; Chau, Thi‐Tuyet‐Trang; Gehlen, Marion; Gallego, M. Angeles; Gloege, Lucas; Gregor, Luke; Gruber, Nicolas; Hauck, Judith; Iida, Yosuke; Ishii, Masao; Keppler, Lydia; Kim, Ji‐Eun; Schlunegger, Sarah; Tjiputra, Jerry; Toyama, Katsuya; Vaittinada Ayar, Pradeebane; Velo, Antón.
(2023).
Seasonal Variability of the Surface Ocean Carbon Cycle: A Synthesis. doi:10.1029/2023gb007798 [33] DOI Wong, Suki C. K.; McKinley, Galen A.; Seager, Richard.
(2022).
Equatorial Pacific pCO 2 Interannual Variability in CMIP6
Models. doi:10.7916/dzbv-zs62 [34] DOI Hulkkonen, Mira; Mielonen, Tero; Leppänen, Saara; Laakso, Anton; Kokkola, Harri.
(2024).
The role of tailored climate scenario information for the
perceived legitimacy of climate policy paths. doi:10.21203/rs.3.rs-3691918/v1 [35] DOI de Vries, Iris Elisabeth; Sippel, Sebastian; Pendergrass, Angeline Greene; Knutti, Reto.
(2022).
Robust global detection of forced changes in mean and extreme precipitation despite observational disagreement on the magnitude of change. doi:10.5194/egusphere-2022-568 [36] DOI Lai, En Ning; Wang-Erlandsson, Lan; Virkki, Vili; Porkka, Miina; van der Ent, Ruud J.
(2023).
Root zone soil moisture in over 25 % of global land permanently beyond pre-industrial variability as early as 2050 without climate policy. doi:10.5194/hess-27-3999-2023 [37] DOI Fang, Shih-Wei; Khodri, Myriam; Timmreck, Claudia; Zanchettin, Davide; Jungclaus, Johann.
(2022).
Disentangling Internal and External Contribution to Atlantic Multidecadal Variability over Past Millennium. doi:10.5194/egusphere-egu22-9547 [38] DOI Linke, Olivia; Quaas, Johannes; Baumer, Finja; Becker, Sebastian; Chylik, Jan; Dahlke, Sandro; Ehrlich, André; Handorf, Dörthe; Jacobi, Christoph; Kalesse-Los, Heike; Lelli, Luca; Mehrdad, Sina; Neggers, Roel A. J.; Riebold, Johannes; Saavedra Garfias, Pablo; Schnierstein, Niklas; Shupe, Matthew D.; Smith, Chris; Spreen, Gunnar; Verneuil, Baptiste; Vinjamuri, Kameswara S.; Vountas, Marco; Wendisch, Manfred.
(2023).
Constraints on simulated past Arctic amplification and lapse-rate feedback from observations. doi:10.5194/acp-2022-836 [40] DOI Ditkovsky, Sam; Resplandy, Laure; Busecke, Julius.
(2023).
Unique ocean circulation pathways reshape the Indian Ocean oxygen minimum zone with warming. doi:10.5194/bg-20-4711-2023 [41] DOI Rodgers, Keith B.; Aumont, Olivier; Toyama, Katsuya; Resplandy, Laure; Ishii, Masao; Nakano, Toshiya; Sasano, Daisuke; Bianchi, Daniele; Yamaguchi, Ryohei.
(2024).
Low-latitude mesopelagic nutrient recycling controls productivity and export. doi:10.1038/s41586-024-07779-1 Is related to
[1] DOI Fox-Kemper, B.; Hewitt, H.T.; Xiao, C.; Aðalgeirsdóttir, G.; Drijfhout, S.S.; Edwards, T.L.; Golledge, N.R.; Hemer, M.; Kopp, R.E.; Krinner, G.; Mix, A.; Notz, D.; Nowicki, S.; Nurhati, I.S.; Ruiz, L.; Sallée, J.-B.; Slangen, A.B.A.; Yu, Y.
(2023).
Ocean, Cryosphere and Sea Level Change. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change
[Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I.
Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B.
Zhou (eds.)]. doi:10.1017/9781009157896.011 [2] DOI Turnock, Steven T.; Allen, Robert J.; Andrews, Martin; Bauer, Susanne E.; Deushi, Makoto; Emmons, Louisa; Good, Peter; Horowitz, Larry; John, Jasmin G.; Michou, Martine; Nabat, Pierre; Naik, Vaishali; Neubauer, David; O'Connor, Fiona M.; Olivié, Dirk; Oshima, Naga; Schulz, Michael; Sellar, Alistair; Shim, Sungbo; Takemura, Toshihiko; Tilmes, Simone; Tsigaridis, Kostas; Wu, Tongwen; Zhang, Jie.
(2020).
Historical and future changes in air pollutants from CMIP6 models. doi:10.5194/acp-20-14547-2020 [3] DOI Terhaar, Jens; Torres, Olivier; Bourgeois, Timothée; Kwiatkowski, Lester.
(2021).
Arctic Ocean acidification over the 21st century co-driven by anthropogenic carbon increases and freshening in the CMIP6 model ensemble. doi:10.5194/bg-18-2221-2021 [4] DOI AYAR, Pradeebane VAITTINADA; Battisti, David S.; Li, Camille; King, Martin Peter; Vrac, Mathieu; Tjiputra, Jerry Fong.
(2023).
A regime view of ENSO flavours through clustering in CMIP6 models. doi:10.22541/essoar.167458065.54814300/v2