WCRP CMIP6 CMIP NUIST NESM3

Cao, Jian; Wang, Bin

Experiment
Summary
These data include all datasets published for 'CMIP6.CMIP.NUIST.NESM3' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The NUIST ESM v3 climate model, released in 2016, includes the following components: atmos: ECHAM v6.3 (T63; 192 x 96 longitude/latitude; 47 levels; top level 1 Pa), land: JSBACH v3.1, ocean: NEMO v3.4 (NEMO v3.4, tripolar primarily 1deg; 384 x 362 longitude/latitude; 46 levels; top grid cell 0-6 m), seaIce: CICE4.1. The model was run by the Nanjing University of Information Science and Technology, Nanjing, 210044, China (NUIST) in native nominal resolutions: atmos: 250 km, land: 2.5 km, ocean: 100 km, seaIce: 100 km.

Individuals using the data must abide by terms of use for CMIP6 data (https://pcmdi.llnl.gov/CMIP6/TermsOfUse). The original license restrictions on these datasets were recorded as global attributes in the data files, but these may have been subsequently updated.
Project
CMIP6 (WCRP Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets)
Contact
Jian Cao (
 jianc@nullnuist.edu.cn
)
Location(s)
global
Spatial Coverage
Longitude 0 to 360 Latitude -90 to 90
Temporal Coverage
500-01-16 to 2014-12-31 (gregorian)
Use constraints
Creative Commons Attribution 4.0 International (CC BY 4.0) (https://creativecommons.org/licenses/by/4.0/)
Data Catalog
World Data Center for Climate
Size
1.80 TiB (1978347937632 Byte)
Format
NetCDF
Status
completely archived
Creation Date
Future Review Date
2033-05-16
Cite as
Cao, Jian; Wang, Bin (2023). NUIST NESMv3 model output prepared for CMIP6 CMIP. World Data Center for Climate (WDCC) at DKRZ. https://www.wdc-climate.de/ui/entry?acronym=C6_4683003

BibTeX RIS
Description
as consistent as the model(s) NESM3
Description
All TQA checks were passed for WCRP CMIP6 CMIP NUIST NESM3.
Method
CMIP6-TQA Checks
Method Description
Checks performed by WDCC. CMIP6-TQA metrics are documented: https://redmine.dkrz.de/projects/cmip6-lta-and-data-citation/wiki/Quality_Checks
Method Url
Result Date
2024-11-26
Contact typePersonORCIDOrganization
-
-
-

Is part of

[1] DOI Cao, Jian; Wang, Bin. (2019). NUIST NESMv3 model output prepared for CMIP6 CMIP. doi:10.22033/ESGF/CMIP6.2021

Is referenced by

[1] DOI Hamed, Mohammed Magdy; Nashwan, Mohamed Salem; Shahid, Shamsuddin; Ismail, Tarmizi bin; Dewan, Ashraf; Asaduzzaman, Md. (2022). Thermal bioclimatic indicators over Southeast Asia: present status and future projection using CMIP6. doi:10.1007/s11356-022-22036-6
[2] DOI Dike, Victor Nnamdi; Lin, Zhaohui; Fei, Kece; Langendijk, Gaby S.; Nath, Debashis. (2022). Evaluation and multimodel projection of seasonal precipitation extremes over central Asia based on CMIP6 simulations. doi:10.1002/joc.7641
[3] DOI Jönsson, Aiden R.; Bender, Frida A.-M. (2022). The response of hemispheric differences in Earth’s albedo to CO<sub>2</sub> forcing in coupled models and its implications for shortwave radiative feedback strength. doi:10.5194/egusphere-2022-811
[4] DOI Correa, Wesley de Souza Campos; Soares, Wagner Rodrigues; Aylas, Georgynio Yossimar Rosales; Reis Junior, Neyval Costa; Marengo, José Antonio; Chou, Sin Chan; Nobre, Carlos. (2023). Avaliação das simulações de temperatura e precipitação de um subconjunto de modelos do CMIP6 para o Brasil. doi:10.14295/derb.v43.774
[5] DOI Seltzer, Alan M.; Blard, Pierre-Henri; Sherwood, Steven C.; Kageyama, Masa. (2023). Terrestrial amplification of past, present, and future climate change. doi:10.1126/sciadv.adf8119
[6] DOI Boisvert, Linette N.; Boeke, Robyn C.; Taylor, Patrick C.; Parker, Chelsea L. (2022). Constraining Arctic Climate Projections of Wintertime Warming With Surface Turbulent Flux Observations and Representation of Surface-Atmosphere Coupling. doi:10.3389/feart.2022.765304
[7] DOI Jönsson, Aiden. (2022). Reply on RC1. doi:10.5194/egusphere-2022-811-ac1
[8] DOI Jönsson, Aiden. (2022). Reply on RC2. doi:10.5194/egusphere-2022-811-ac2
[9] DOI Paçal, Aytaç; Hassler, Birgit; Weigel, Katja; Kurnaz, M. Levent; Wehner, Michael F.; Eyring, Veronika. (2023). Detecting Extreme Temperature Events Using Gaussian Mixture Models. doi:10.1029/2023jd038906
[10] DOI Liu, Zhu; Zhang, Guoping; Ding, Jin; Xiao, Xiong. (2022). Biases of the Mean and Shape Properties in CMIP6 Extreme Precipitation Over Central Asia. doi:10.3389/feart.2022.918337
[11] DOI Zhang, Meng-Zhuo; Han, Ying; Xu, Zhongfeng; Guo, Weidong. (2024). Bias-corrected NESM3 global dataset for dynamical downscaling under 1.5 °C and 2 °C global warming scenarios. doi:10.1038/s41597-024-03224-0

References

[1] DOI Cao Jian; Bin Wang; Youngmin Yang;Libin Ma;Juan Li; So Sun; Yan Bao; Jie He; Xiao Zhou; Liguang Wu. (2018). The NUIST Earth System Model (NESM) version 3: description and preliminary evaluation. doi:10.5194/gmd-11-2975-2018

Is related to

[1] DOI Bombardi, Rodrigo J.; Boos, William R. (2021). Explaining Globally Inhomogeneous Future Changes in Monsoons Using Simple Moist Energy Diagnostics. doi:10.1175/jcli-d-20-1012.1
[2] DOI Duffy, Margaret L.; O’Gorman, Paul A. (2022). Intermodel Spread in Walker Circulation Responses Linked to Spread in Moist Stability and Radiation Responses. doi:10.1029/2022jd037382
[3] DOI Rajulapati, Chandra Rupa; Papalexiou, Simon Michael. (2023). Precipitation Bias Correction: A Novel Semi‐parametric Quantile Mapping Method. doi:10.1029/2023ea002823
[4] DOI Chen, Dong; Zhao, Yu; Zhang, Jie; Yu, Huan; Yu, Xingna. (2020). Characterization and source apportionment of aerosol light scattering in a typical polluted city in Yangtze River Delta, China. doi:10.5194/acp-2020-176
[5] DOI Cao, Jian. (2018). The Nuist Earth System Model (Nesm) Version 3: Description And Preliminary Evaluation. doi:10.5281/zenodo.1137864

Is cited by

[1] DOI Fox-Kemper, B.; Hewitt, H.T.; Xiao, C.; Aðalgeirsdóttir, G.; Drijfhout, S.S.; Edwards, T.L.; Golledge, N.R.; Hemer, M.; Kopp, R.E.; Krinner, G.; Mix, A.; Notz, D.; Nowicki, S.; Nurhati, I.S.; Ruiz, L.; Sallée, J.-B.; Slangen, A.B.A.; Yu, Y. (2023). Ocean, Cryosphere and Sea Level Change. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.011
[2] DOI Lee, J.-Y.; Marotzke, J.; Bala, G.; Cao, L.; Corti, S.; Dunne, J.P.; Engelbrecht, F.; Fischer, E.; Fyfe, J.C; Jones, C.; Maycock, A.; Mutemi, J.; Ndiaye, O.; Panickal, S.; Zhou,T. (2023). Future Global Climate: Scenario-Based Projections and Near-Term Information. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.006
[3] DOI Eyring, V.; Gillett, N.P.; Achuta Rao, K.M.; Barimalala, R.; Barreiro Parrillo, M.; Bellouin, N.; Cassou, C.; Durack, P.J.; Kosaka, Y.; McGregor, S.; Min, S.; Morgenstern, O.; Sun, Y. (2023). Human Influence on the Climate System. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.005
[4] DOI Doblas-Reyes, F.J.; Sörensson, A.A.; Almazroui, M.; Dosio, A.; Gutowski, W.J.; Haarsma, R.; Hamdi, R.; Hewitson, B.; Kwon, W.-T.; Lamptey, B.L.; Maraun, D.; Stephenson, T.S.; Takayabu, I.; Terray, L.; Turner, A.; Zuo, Z. (2023). Linking Global to Regional Climate Change. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.012
[5] DOI Seneviratne, S.I.; Zhang, X.; Adnan, M.; Badi, W.; Dereczynski, C.; Di Luca, A.; Ghosh, S.; Iskandar, I.; Kossin, J.; Lewis, S.; Otto, F.; Pinto, I.; Satoh, M.; Vicente-Serrano, S.M.; Wehner, M.; Zhou, B. (2023). Weather and Climate Extreme Events in a Changing Climate. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.013
[6] DOI Gutiérrez, J.M.; Jones, R.G.; Narisma, G.T.; Alves, L.M.; Amjad, M.; Gorodetskaya, I.V.; Grose, M.; Klutse, N.A.B.; Krakovska, S.; Li, J.; Martínez-Castro, D.; Mearns, L.O.; Mernild, S.H.; Ngo-Duc, T.; van den Hurk, B.; Yoon, J.-H. (2023). Atlas. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change[Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.021
[7] DOI Intergovernmental Panel on Climate Change (IPCC). (2023). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896
[8] DOI Douville, H.; Raghavan, K.; Renwick, J.; Allan, R.P.; Arias, P.A.; Barlow, M.; Cerezo-Mota, R.; Cherchi, A.; Gan, T.Y.; Gergis, J.; Jiang, D.; Khan, A.; Pokam Mba, W.; Rosenfeld, D.; Tierney, J.; Zolina, O. (2023). Water Cycle Changes. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.010

Attached Dataset Groups ( 5 )

Search on group level...Details for selected entry
[Entry acronym: C6_4683003] [Entry id: 4683003]