WCRP CMIP6 CMIP MOHC UKESM1-0-LL

Tang, Yongming et al.

Experiment
Summary
These data include all datasets published for 'CMIP6.CMIP.MOHC.UKESM1-0-LL' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The UKESM1.0-N96ORCA1 climate model, released in 2018, includes the following components: aerosol: UKCA-GLOMAP-mode, atmos: MetUM-HadGEM3-GA7.1 (N96; 192 x 144 longitude/latitude; 85 levels; top level 85 km), atmosChem: UKCA-StratTrop, land: JULES-ES-1.0, ocean: NEMO-HadGEM3-GO6.0 (eORCA1 tripolar primarily 1 deg with meridional refinement down to 1/3 degree in the tropics; 360 x 330 longitude/latitude; 75 levels; top grid cell 0-1 m), ocnBgchem: MEDUSA2, seaIce: CICE-HadGEM3-GSI8 (eORCA1 tripolar primarily 1 deg; 360 x 330 longitude/latitude). The model was run by the Met Office Hadley Centre, Fitzroy Road, Exeter, Devon, EX1 3PB, UK (MOHC) in native nominal resolutions: aerosol: 250 km, atmos: 250 km, atmosChem: 250 km, land: 250 km, ocean: 100 km, ocnBgchem: 100 km, seaIce: 100 km.

Individuals using the data must abide by terms of use for CMIP6 data (https://pcmdi.llnl.gov/CMIP6/TermsOfUse). The original license restrictions on these datasets were recorded as global attributes in the data files, but these may have been subsequently updated.
Project
CMIP6 (WCRP Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets)
Contact
Colin Jones (
 colin.jones@nullmetoffice.gov.uk
)
Location(s)
global
Spatial Coverage
Longitude 0 to 360 Latitude -90 to 90
Temporal Coverage
1850-01-01 to 3839-12-16 (gregorian)
Use constraints
Creative Commons Attribution 4.0 International (CC BY 4.0) (https://creativecommons.org/licenses/by/4.0/)
Data Catalog
World Data Center for Climate
Size
40.59 TiB (44628200629064 Byte)
Format
NetCDF
Status
completely archived
Creation Date
Future Review Date
2033-05-04
Cite as
Tang, Yongming; Rumbold, Steve; Ellis, Rich; Kelley, Douglas; Mulcahy, Jane; Sellar, Alistair; Walton, Jeremy; Jones, Colin (2023). MOHC UKESM1.0-LL model output prepared for CMIP6 CMIP. World Data Center for Climate (WDCC) at DKRZ. https://www.wdc-climate.de/ui/entry?acronym=C6_4662099

BibTeX RIS
Description
as consistent as the model(s) UKESM1-0-LL
Description
All TQA checks were passed for WCRP CMIP6 CMIP MOHC UKESM1-0-LL.
Method
CMIP6-TQA Checks
Method Description
Checks performed by WDCC. CMIP6-TQA metrics are documented: https://redmine.dkrz.de/projects/cmip6-lta-and-data-citation/wiki/Quality_Checks
Method Url
Result Date
2025-05-28
Contact typePersonORCIDOrganization
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Is part of

[1] DOI Tang, Yongming; Rumbold, Steve; Ellis, Rich; Kelley, Douglas; Mulcahy, Jane; Sellar, Alistair; Walton, Jeremy; Jones, Colin. (2019). MOHC UKESM1.0-LL model output prepared for CMIP6 CMIP. doi:10.22033/ESGF/CMIP6.1569

Is referenced by

[1] DOI Wilcox, Laura; Liu, Zhen; Samset, Bjørn; Hawkins, Ed; Lund, Marianne; Nordling, Kalle; Undorf, Sabine; Bollasina, Massimo; Ekman, Annica; Kirshnan, Srinath; Merikanto, Joonas; Turner, Andrew. (2020). Accelerated increases in global and Asian summer monsoon precipitation from future aerosol reductions. doi:10.5194/egusphere-egu2020-9457
[2] DOI Kwiatkowski, Lester; Torres, Olivier; Bopp, Laurent; Aumont, Olivier; Chamberlain, Matthew; Christian, James R.; Dunne, John P.; Gehlen, Marion; Ilyina, Tatiana; John, Jasmin G.; Lenton, Andrew; Li, Hongmei; Lovenduski, Nicole S.; Orr, James C.; Palmieri, Julien; Santana-Falcón, Yeray; Schwinger, Jörg; Séférian, Roland; Stock, Charles A.; Tagliabue, Alessandro; Takano, Yohei; Tjiputra, Jerry; Toyama, Katsuya; Tsujino, Hiroyuki; Watanabe, Michio; Yamamoto, Akitomo; Yool, Andrew; Ziehn, Tilo. (2020). Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections. doi:10.5194/bg-17-3439-2020
[3] DOI García-Franco, Jorge L.; Gray, Lesley J.; Osprey, Scott. (2020). The American monsoon system in HadGEM3 and UKESM1. doi:10.5194/wcd-1-349-2020
[4] DOI Kravitz, Ben; MacMartin, Douglas G.; Visioni, Daniele; Boucher, Olivier; Cole, Jason N. S.; Haywood, Jim; Jones, Andy; Lurton, Thibaut; Nabat, Pierre; Niemeier, Ulrike; Robock, Alan; Séférian, Roland; Tilmes, Simone. (2020). Comparing different generations of idealized solar geoengineering simulations in the Geoengineering Model Intercomparison Project (GeoMIP). doi:10.5194/acp-2020-732
[5] DOI Dimdore-Miles, Oscar; Gray, Lesley; Osprey, Scott. (2020). Origins of Multi-decadal Variability in Sudden Stratospheric Warmings. doi:10.5194/wcd-2020-56
[6] DOI Dimdore-Miles, Oscar; Gray, Lesley; Osprey, Scott. (2021). Origins of Multi-decadal Variability in Sudden Stratospheric Warmings. doi:10.5194/egusphere-egu21-1509
[7] DOI Kravitz, Ben; MacMartin, Douglas G.; Visioni, Daniele; Boucher, Olivier; Cole, Jason N. S.; Haywood, Jim; Jones, Andy; Lurton, Thibaut; Nabat, Pierre; Niemeier, Ulrike; Robock, Alan; Séférian, Roland; Tilmes, Simone. (2021). Comparing different generations of idealized solar geoengineering simulations in the Geoengineering Model Intercomparison Project (GeoMIP). doi:10.5194/acp-21-4231-2021
[8] DOI Dimdore-Miles, Oscar; Gray, Lesley; Osprey, Scott. (2021). Origins of multi-decadal variability in sudden stratospheric warmings. doi:10.5194/wcd-2-205-2021
[9] DOI Wilcox, Laura J.; Liu, Zhen; Samset, Bjørn H.; Hawkins, Ed; Lund, Marianne T.; Nordling, Kalle; Undorf, Sabine; Bollasina, Massimo; Ekman, Annica M. L.; Krishnan, Srinath; Merikanto, Joonas; Turner, Andrew G. (2020). Accelerated increases in global and Asian summer monsoon precipitation from future aerosol reductions. doi:10.5194/acp-20-11955-2020
[10] DOI Wilcox, Laura J.; Liu, Zhen; Samset, Bjørn H.; Hawkins, Ed; Lund, Marianne T.; Nordling, Kalle; Undorf, Sabine; Bollasina, Massimo; Ekman, Annica M. L.; Krishnan, Srinath; Merikanto, Joonas; Turner, Andrew G. (2020). Accelerated increases in global and Asian summer monsoon precipitation from future aerosol reductions. doi:10.5194/acp-2019-1188
[11] DOI Turnock, Steven T.; Allen, Robert J.; Andrews, Martin; Bauer, Susanne E.; Deushi, Makoto; Emmons, Louisa; Good, Peter; Horowitz, Larry; John, Jasmin G.; Michou, Martine; Nabat, Pierre; Naik, Vaishali; Neubauer, David; O'Connor, Fiona M.; Olivié, Dirk; Oshima, Naga; Schulz, Michael; Sellar, Alistair; Shim, Sungbo; Takemura, Toshihiko; Tilmes, Simone; Tsigaridis, Kostas; Wu, Tongwen; Zhang, Jie. (2020). Historical and future changes in air pollutants from CMIP6 models. doi:10.5194/acp-20-14547-2020
[12] DOI Hardacre, Catherine; Mulcahy, Jane P.; Pope, Richard J.; Jones, Colin G.; Rumbold, Steven T.; Li, Can; Johnson, Colin; Turnock, Steven T. (2021). Evaluation of SO<sub>2</sub>, SO<sub>4</sub><sup>2−</sup> and an updated SO<sub>2</sub> dry deposition parameterization in the United Kingdom Earth System Model. doi:10.5194/acp-21-18465-2021
[13] DOI Zhang, Kequan; Duan, Jiakang; Zhao, Siyi; Zhang, Jiankai; Keeble, James; Liu, Hongwen. (2021). Evaluating the Ozone Valley over the Tibetan Plateau in CMIP6 Models. doi:10.1007/s00376-021-0442-2
[14] DOI Cai, Wenju; Yang, Kai; Wu, Lixin; Huang, Gang; Santoso, Agus; Ng, Benjamin; Wang, Guojian; Yamagata, Toshio. (2020). Opposite response of strong and moderate positive Indian Ocean Dipole to global warming. doi:10.1038/s41558-020-00943-1
[15] DOI Meuriot, Ophélie; Lique, Camille; Plancherel, Yves. (2022). Properties, sensitivity, and stability of the Southern Hemisphere salinity minimum layer in the UKESM1 model. doi:10.1007/s00382-022-06304-2
[16] DOI Su, Xiaole; Wu, Tongwen; Zhang, Jie; Zhang, Yong; Jin, Junli; Zhou, Qing; Zhang, Fang; Liu, Yiming; Zhou, Yumeng; Zhang, Lin; Turnock, Steven T.; Furtado, Kalli. (2022). Present-Day PM2.5 over Asia: Simulation and Uncertainty in CMIP6 ESMs. doi:10.1007/s13351-022-1202-7
[17] DOI Lalande, Mickaël; Ménégoz, Martin; Krinner, Gerhard; Naegeli, Kathrin; Wunderle, Stefan. (2021). Climate change in the High Mountain Asia in CMIP6. doi:10.5194/esd-2021-43
[18] DOI Vaittinada Ayar, Pradeebane; Bopp, Laurent; Christian, Jim R.; Ilyina, Tatiana; Krasting, John P.; Séférian, Roland; Tsujino, Hiroyuki; Watanabe, Michio; Yool, Andrew; Tjiputra, Jerry. (2022). Contrasting projections of the ENSO-driven CO<sub>2</sub> flux variability in the equatorial Pacific under high-warming scenario. doi:10.5194/esd-13-1097-2022
[19] DOI Yiou, Pascal; Faranda, Davide; Thao, Soulivanh; Vrac, Mathieu. (2021). Projected Changes in the Atmospheric Dynamics of Climate Extremes in France. doi:10.3390/atmos12111440
[20] DOI Rogers, Matthew H.; Furtado, Jason; Anderson, Bruce. (2021). The Pacific Decadal Precession and its Relationship to Tropical Pacific Decadal Variability in CMIP6 Models. doi:10.21203/rs.3.rs-390152/v1
[21] DOI García-Franco, Jorge Luis; Chadwick, Robin; Gray, Lesley; Osprey, Scott; Adams, David K. (2022). Revisiting mechanisms of the Mesoamerican Midsummer drought. doi:10.21203/rs.3.rs-1351433/v1
[22] DOI Wang, Shizhu; Wang, Qiang; Wang, Muyin; Lohmann, Gerrit; Qiao, Fangli. (2022). Arctic Ocean Freshwater in CMIP6 Coupled Models. doi:10.1029/2022ef002878
[23] DOI Zeng, Guang; Morgenstern, Olaf; Williams, Jonny H. T.; O’Connor, Fiona M.; Griffiths, Paul T.; Keeble, James; Deushi, Makoto; Horowitz, Larry W.; Naik, Vaishali; Emmons, Louisa K.; Abraham, N. Luke; Archibald, Alexander T.; Bauer, Susanne E.; Hassler, Birgit; Michou, Martine; Mills, Michael J.; Murray, Lee T.; Oshima, Naga; Sentman, Lori T.; Tilmes, Simone; Tsigaridis, Kostas; Young, Paul J. (2022). Attribution of Stratospheric and Tropospheric Ozone Changes Between 1850 and 2014 in CMIP6 Models. doi:10.1029/2022jd036452
[24] DOI Woodward, Stephanie; Sellar, Alistair A.; Tang, Yongming; Stringer, Marc; Yool, Andrew; Robertson, Eddy; Wiltshire, Andy. (2022). The simulation of mineral dust in the United Kingdom Earth System Model UKESM1. doi:10.5194/acp-22-14503-2022
[25] DOI Rogers, Matthew H.; Furtado, Jason C.; Anderson, Bruce T. (2022). The pacific decadal precession and its relationship to tropical pacific decadal variability in CMIP6 models. doi:10.1007/s00382-021-06114-y
[26] DOI Parry, Isobel M.; Ritchie, Paul D. L.; Cox, Peter M. (2022). Evidence of localised Amazon rainforest dieback in CMIP6 models. doi:10.5194/esd-13-1667-2022
[27] DOI Diamond, Michael S.; Gristey, Jake J.; Kay, Jennifer E.; Feingold, Graham. (2022). Anthropogenic aerosol and cryosphere changes drive Earth’s strong but transient clear-sky hemispheric albedo asymmetry. doi:10.1038/s43247-022-00546-y
[28] DOI Wilcox, Laura J.; Allen, Robert J.; Samset, Bjørn H.; Bollasina, Massimo A.; Griffiths, Paul T.; Keeble, James; Lund, Marianne T.; Makkonen, Risto; Merikanto, Joonas; O'Donnell, Declan; Paynter, David J.; Persad, Geeta G.; Rumbold, Steven T.; Takemura, Toshihiko; Tsigaridis, Kostas; Undorf, Sabine; Westervelt, Daniel M. (2023). The Regional Aerosol Model Intercomparison Project (RAMIP). doi:10.5194/gmd-16-4451-2023
[29] DOI Abalos, Marta; Calvo, Natalia; Benito-Barca, Samuel; Garny, Hella; Hardiman, Steven C.; Lin, Pu; Andrews, Martin B.; Butchart, Neal; Garcia, Rolando; Orbe, Clara; Saint-Martin, David; Watanabe, Shingo; Yoshida, Kohei. (2021). The Brewer–Dobson circulation in CMIP6. doi:10.5194/acp-21-13571-2021
[30] DOI Karmouche, Soufiane; Galytska, Evgenia; Runge, Jakob; Meehl, Gerald A.; Phillips, Adam S.; Weigel, Katja; Eyring, Veronika. (2022). Regime-oriented causal model evaluation of Atlantic-Pacific teleconnections in CMIP6. doi:10.5194/egusphere-2022-1013
[31] DOI Abalos, Marta; Calvo, Natalia; Benito-Barca, Samuel; Garny, Hella; Hardiman, Steven C.; Lin, Pu; Andrews, Martin B.; Butchart, Neal; Garcia, Rolando; Orbe, Clara; Saint-Martin, David; Watanabe, Shingo; Yoshida, Kohei. (2021). The Brewer-Dobson circulation in CMIP6. doi:10.5194/acp-2021-206
[32] DOI Gerber, Edwin. (2021). Comment on acp-2021-206. doi:10.5194/acp-2021-206-rc2
[33] DOI Papalexiou, Simon Michael; Rajulapati, Chandra Rupa; Andreadis, Konstantinos M.; Foufoula‐Georgiou, Efi; Clark, Martyn P.; Trenberth, Kevin E. (2021). Probabilistic Evaluation of Drought in CMIP6 Simulations. doi:10.1029/2021ef002150
[34] DOI Correa, Wesley de Souza Campos; Soares, Wagner Rodrigues; Aylas, Georgynio Yossimar Rosales; Reis Junior, Neyval Costa; Marengo, José Antonio; Chou, Sin Chan; Nobre, Carlos. (2023). Avaliação das simulações de temperatura e precipitação de um subconjunto de modelos do CMIP6 para o Brasil. doi:10.14295/derb.v43.774
[35] DOI Ngoma, Hamida; Wen, Wang; Ayugi, Brian; Babaousmail, Hassen; Karim, Riwzan; Ongoma, Victor. (2021). Evaluation of the Global Climate Models in CMIP6 over Uganda. doi:10.20944/preprints202012.0782.v1
[36] DOI Romanovska, Paula; Gleixner, Stephanie; Gornott, Christoph. (2023). Climate data uncertainty for agricultural impact assessments in West Africa. doi:10.1007/s00704-023-04430-3
[37] DOI Morée, Anne L. (2023). Reply on RC1 and RC2. doi:10.5194/egusphere-2022-1364-ac1
[38] DOI Parrish, David D.; Derwent, Richard G.; Turnock, Steven T.; O’Connor, Fiona M.; Staehelin, Johannes; Bauer, Susanne E.; Deushi, Makoto; Oshima, Naga; Tsigaridis, Kostas; Wu, Tongwen; Zhang, Jie. (2021). Anthropogenic Reversal of the Natural Ozone Gradient between Northern and Southern Mid-latitudes. doi:10.5194/acp-2020-1198
[39] DOI Revell, L. E.; Wotherspoon, N. E.; Jones, O. J.; Bhatti, Y. A.; Williams, J. H. T.; Mackie, S. L.; Mulcahy, J. P. (2021). Atmosphere‐Ocean Feedback From Wind‐Driven Sea Spray Aerosol Production. doi:10.1029/2020gl091900
[40] DOI Irving, Damien. (2023). Comment on egusphere-2022-1515. doi:10.5194/egusphere-2022-1515-rc1
[41] DOI Wagner, Wolfgang. (2023). Comment on egusphere-2022-971. doi:10.5194/egusphere-2022-971-rc2
[42] DOI Lai, En Ning; Wang-Erlandsson, Lan; Virkki, Vili; Porkka, Miina; van der Ent, Ruud J. (2022). Root zone soil moisture in over 25 % of global land permanently beyond pre-industrial variability as early as 2050. doi:10.5194/egusphere-2022-971
[43] DOI Ditkovsky, Sam; Resplandy, Laure; Busecke, Julius. (2023). Unique ocean circulation pathways reshape the Indian Ocean oxygen minimum zone with warming. doi:10.5194/egusphere-2023-1082
[44] DOI He, Yanfeng. (2023). Comment on egusphere-2023-301. doi:10.5194/egusphere-2023-301-ac1
[45] DOI Morée, Anne L.; Clarke, Tayler M.; Cheung, William W. L.; Frölicher, Thomas L. (2022). Impact of deoxygenation and warming on global marine species in the 21st century. doi:10.5194/egusphere-2022-1364
[46] DOI Zhou, Yumeng; Wu, Tongwen; Zhou, Yang; Zhang, Jie; Zhang, Fang; Su, Xiaole; Jie, Weihua; Zhao, He; Zhang, Yanwu; Wang, Jun. (2023). Can global warming bring more dust?. doi:10.1007/s00382-023-06706-w
[47] DOI Siegfried, Tobias; Mujahid, Aziz Ul Haq; Marti, Beatrice Sabine; Molnar, Peter; Karger, Dirk Nikolaus; Yakovlev, Andrey. (2023). Assessing Future Hydrological Impacts of Climate Change on High-Mountain Central Asia: Insights from a Stochastic Soil Moisture Water Balance Model. doi:10.5194/egusphere-2023-520
[48] DOI Karmouche, Soufiane. (2023). Reply on RC2. doi:10.5194/egusphere-2022-1013-ac2
[49] DOI Linke, Olivia; Quaas, Johannes; Baumer, Finja; Becker, Sebastian; Chylik, Jan; Dahlke, Sandro; Ehrlich, André; Handorf, Dörthe; Jacobi, Christoph; Kalesse-Los, Heike; Lelli, Luca; Mehrdad, Sina; Neggers, Roel A. J.; Riebold, Johannes; Saavedra Garfias, Pablo; Schnierstein, Niklas; Shupe, Matthew D.; Smith, Chris; Spreen, Gunnar; Verneuil, Baptiste; Vinjamuri, Kameswara S.; Vountas, Marco; Wendisch, Manfred. (2023). Constraints on simulated past Arctic amplification and lapse rate feedback from observations. doi:10.5194/acp-23-9963-2023
[50] DOI Gnanadesikan, Anand. (2023). Comment on egusphere-2023-1082. doi:10.5194/egusphere-2023-1082-rc2
[51] DOI Bjarke, Nels; Barsugli, Joseph; Livneh, Ben. (2023). Ensemble of CMIP6 derived reference and potential evapotranspiration with radiative and advective components. doi:10.1038/s41597-023-02290-0
[52] DOI Mulcahy, Jane Patricia; Jones, Colin G.; Rumbold, Steven T.; Kuhlbrodt, Till; Dittus, Andrea J.; Blockley, Edward W.; Yool, Andrew; Walton, Jeremy; Hardacre, Catherine; Andrews, Timothy; Bodas-Salcedo, Alejandro; Stringer, Marc; de Mora, Lee; Harris, Phil; Hill, Richard; Kelley, Doug; Robertson, Eddy; Tang, Yongming. (2022). UKESM1.1: Development and evaluation of an updated configuration of the UK Earth System Model. doi:10.5194/gmd-2022-113
[53] DOI Ngoma, Hamida; Wen, Wang; Ayugi, Brian; Babaousmail, Hassen; Karim, Rizwan; Ongoma, Victor. (2021). Evaluation of precipitation simulations in CMIP6 models over Uganda. doi:10.1002/joc.7098
[54] DOI Lalande, Mickaël; Ménégoz, Martin; Krinner, Gerhard; Naegeli, Kathrin; Wunderle, Stefan. (2021). Climate change in the High Mountain Asia in CMIP6. doi:10.5194/esd-12-1061-2021
[55] DOI Keeble, James; Yiu, Yu Yeung Scott; Archibald, Alexander T.; O’Connor, Fiona; Sellar, Alistair; Walton, Jeremy; Pyle, John A. (2021). Using Machine Learning to Make Computationally Inexpensive Projections of 21st Century Stratospheric Column Ozone Changes in the Tropics. doi:10.3389/feart.2020.592667
[56] DOI Paçal, Aytaç; Hassler, Birgit; Weigel, Katja; Kurnaz, M. Levent; Wehner, Michael F.; Eyring, Veronika. (2023). Detecting Extreme Temperature Events Using Gaussian Mixture Models. doi:10.1029/2023jd038906
[57] DOI van der Ent, Ruud. (2023). Reply on RC3. doi:10.5194/egusphere-2022-971-ac3
[58] DOI van der Ent, Ruud. (2023). Reply on RC2. doi:10.5194/egusphere-2022-971-ac2
[59] DOI Karmouche, Soufiane. (2023). Reply on RC1. doi:10.5194/egusphere-2022-1013-ac1
[60] DOI Cutillas-Lozano, Luis Gabino; López, Mario Santa Cruz; Velasco, Antonio Pérez; Andrés-Doménech, Ignacio; Olcina-Cantos, Jorge. (2023). Local-scale regionalisation of climate change effects on rainfall pattern: application to Alicante City (Spain). doi:10.1007/s00704-023-04565-3
[61] DOI Abalos, Marta. (2021). Reply to CC1. doi:10.5194/acp-2021-206-ac1
[62] DOI Abalos, Marta. (2021). Reply on CC3. doi:10.5194/acp-2021-206-ac3
[63] DOI Vaittinada Ayar, Pradeebane; Tjiputra, Jerry; Bopp, Laurent; Christian, Jim R.; Ilyina, Tatiana; Krasting, John P.; Séférian, Roland; Tsujino, Hiroyuki; Watanabe, Michio; Yool, Andrew. (2022). Contrasting projection of the ENSO-driven CO&amp;lt;sub&amp;gt;2&amp;lt;/sub&amp;gt; flux variability in the Equatorial Pacific under high warming scenario. doi:10.5194/esd-2022-12
[64] DOI Aylmer, Jake R.; Ferreira, David; Feltham, Daniel L. (2024). Impact of ocean heat transport on sea ice captured by a simple energy balance model. doi:10.1038/s43247-024-01565-7
[65] DOI Turnock, Steven T.; Allen, Robert J.; Andrews, Martin; Bauer, Susanne E.; Emmons, Louisa; Good, Peter; Horowitz, Larry; Michou, Martine; Nabat, Pierre; Naik, Vaishali; Neubauer, David; O'Connor, Fiona M.; Olivié, Dirk; Schulz, Michael; Sellar, Alistair; Takemura, Toshihiko; Tilmes, Simone; Tsigaridis, Kostas; Wu, Tongwen; Zhang, Jie. (2020). Historical and future changes in air pollutants from CMIP6 models. doi:10.5194/acp-2019-1211
[66] DOI Cook, B. I.; Mankin, J. S.; Williams, A. P.; Marvel, K. D.; Smerdon, J. E.; Liu, H. (2021). Uncertainties, limits, and benefits of climate change mitigation for soil moisture drought in southwestern North America. doi:10.1029/2021EF002014
[67] DOI Bulgin, Claire E; Mecking, Jennifer V; Harvey, Ben J; Jevrejeva, Svetlana; McCarroll, Niall F; Merchant, Christopher J; Sinha, Bablu. (2023). Dynamic sea-level changes and potential implications for storm surges in the UK: a storylines perspective. doi:10.1088/1748-9326/acc6df
[68] DOI Hardacre, Catherine. (2021). Reply on RC2. doi:10.5194/acp-2021-238-ac2
[69] DOI Hardacre, Catherine. (2021). Reply on RC1. doi:10.5194/acp-2021-238-ac1
[70] DOI Cook, B. I.; Mankin, J. S.; Williams, A. P.; Marvel, K. D.; Smerdon, J. E.; Liu, H. (2021). Uncertainties, Limits, and Benefits of Climate Change Mitigation for Soil Moisture Drought in Southwestern North America. doi:10.1029/2021ef002014
[71] DOI Sellevold, Raymond; Vizcaino, Miren. (2021). First Application of Artificial Neural Networks to Estimate 21st Century Greenland Ice Sheet Surface Melt. doi:10.1029/2021gl092449
[72] DOI Rodgers, Keith B.; Schwinger, Jörg; Fassbender, Andrea J.; Landschützer, Peter; Yamaguchi, Ryohei; Frenzel, Hartmut; Stein, Karl; Müller, Jens Daniel; Goris, Nadine; Sharma, Sahil; Bushinsky, Seth; Chau, Thi‐Tuyet‐Trang; Gehlen, Marion; Gallego, M. Angeles; Gloege, Lucas; Gregor, Luke; Gruber, Nicolas; Hauck, Judith; Iida, Yosuke; Ishii, Masao; Keppler, Lydia; Kim, Ji‐Eun; Schlunegger, Sarah; Tjiputra, Jerry; Toyama, Katsuya; Vaittinada Ayar, Pradeebane; Velo, Antón. (2023). Seasonal Variability of the Surface Ocean Carbon Cycle: A Synthesis. doi:10.1029/2023gb007798
[73] DOI He, Yanfeng; Sudo, Kengo. (2023). Historical (1960–2014) lightning and LNO<sub>x</sub> trends and their controlling factors in a chemistry–climate model. doi:10.5194/egusphere-2023-301
[74] DOI Hinrichs, Claudia; Hauck, Judith. (2022). Report on skill of CMIP6 models to simulate alkalinity and improved parameterizations for large scale alkalinity distribution. doi:10.3289/oceannets_d4.4
[75] DOI MAKINDE, AKINTUNDE Israel; Abiodun, Babatunde J.; James, Rachel; Washington, Richard; Dyer, Ellen; Webb, Tom. (2022). How Well Do CMIP6 Models Simulate the Influence of the West African Westerly Jet on Sahel Precipitation?. doi:10.21203/rs.3.rs-1274137/v1
[76] DOI Hardacre, Catherine; Mulcahy, Jane P.; Pope, Richard; Jones, Colin G.; Rumbold, Steven R.; Li, Can; Johnson, C.; Turnock, Steven T. (2021). Evaluation of SO2, SO42− and an updated SO2 dry deposition parameterization in the United Kingdom Earth System Model. doi:10.5194/acp-21-18465-2021
[77] DOI Dennison, Fraser; Woodhouse, Matthew T. (2023). ACCESS-CM2-Chem: evaluation of southern hemisphere ozone and its effect on the Southern Annular Mode. doi:10.1071/es22015
[78] DOI Grandey, Benjamin S.; Koh, Zhi Yang; Samanta, Dhrubajyoti; Horton, Benjamin P.; Dauwels, Justin; Chew, Lock Yue. (2023). Monte Carlo drift correction – quantifying the drift uncertainty of global climate models. doi:10.5194/gmd-16-6593-2023
[79] DOI Lalande, Mickaël. (2021). Reply on RC1. doi:10.5194/esd-2021-43-ac1
[80] DOI Lalande, Mickaël. (2021). Reply on RC2. doi:10.5194/esd-2021-43-ac2
[81] DOI Kwiatkowski, Lester; Torres, Olivier; Bopp, Laurent; Aumont, Olivier; Chamberlain, Matthew; Christian, James; Dunne, John P.; Gehlen, Marion; Ilyina, Tatiana; John, Jasmin G.; Lenton, Andrew; Li, Hongmei; Lovenduski, Nicole S.; Orr, James C.; Palmieri, Julien; Schwinger, Jörg; Séférian, Roland; Stock, Charles A.; Tagliabue, Alessandro; Takano, Yohei; Tjiputra, Jerry; Toyama, Katsuya; Tsujino, Hiroyuki; Watanabe, Michio; Yamamoto, Akitomo; Yool, Andrew; Ziehn, Tilo. (2020). Twenty-first century ocean warming, acidification, deoxygenation, and upper ocean nutrient decline from CMIP6 model projections. doi:10.5194/bg-2020-16
[82] DOI Nogueira, Miguel. (2021). Multivariate Process-Based Evaluation of CMIP6 Historical Simulations Over the Tropical Oceans. doi:10.21203/rs.3.rs-458817/v1
[83] DOI Hardacre, Catherine; Mulcahy, Jane P.; Pope, Richard; Jones, Colin G.; Rumbold, Steven R.; Li, Can; Turnock, Steven T. (2021). Evaluation of SO2, SO42− and an updated SO2 dry deposition parameterization in UKESM1. doi:10.5194/acp-2021-238
[84] DOI Cook, B. I.; Mankin, J. S.; Williams, A. P.; Marvel, K. D.; Smerdon, J. E.; Liu, H. (2022). Uncertainties, Limits, and Benefits of Climate Change Mitigation for Soil Moisture Drought in Southwestern North America. doi:10.7916/m79w-wc11
[85] DOI Narenpitak, Pornampai; Kongkulsiri, Siriwat; Tomkratoke, Saifhon; Sirisup, Sirod. (2024). Regional impacts of solar radiation modification on surface temperature and precipitation in Mainland Southeast Asia and the adjacent oceans. doi:10.1038/s41598-024-73149-6
[86] DOI Hulkkonen, Mira; Mielonen, Tero; Leppänen, Saara; Laakso, Anton; Kokkola, Harri. (2024). The role of tailored climate scenario information for the perceived legitimacy of climate policy paths. doi:10.21203/rs.3.rs-3691918/v1
[87] DOI García-Franco, J. L.; Chadwick, R.; Gray, L. J.; Osprey, S.; Adams, D. K. (2022). Revisiting mechanisms of the Mesoamerican Midsummer drought. doi:10.1007/s00382-022-06338-6
[88] DOI Morée, Anne L.; Clarke, Tayler M.; Cheung, William W. L.; Frölicher, Thomas L. (2023). Impact of deoxygenation and warming on global marine species in the 21st century. doi:10.5194/bg-20-2425-2023
[89] DOI Heinrich, Philipp; Hagemann, Stefan; Weisse, Ralf. (2024). Automated Classification of Atmospheric Circulation Types for Compound Flood Risk Assessment: CMIP6 Model Analysis Utilising a Deep Learning Ensemble. doi:10.21203/rs.3.rs-4017900/v1
[90] DOI Komelo, Crépin K.; Fotso-Nguemo, Thierry C.; Ngavom, Zakariahou; Dessacka, Abdon K.; Taguela, Thierry N.; Yepdo, Zéphirin D.; Nghonda, Jean P.; Diedhiou, Arona; Monkam, David; Tchawoua, Clément. (2024). Evaluation of extreme precipitation events as simulated by CMIP6 models over Central Africa: Spatial patterns. doi:10.1007/s00704-024-05198-w
[91] DOI Grandey, Benjamin S.; Koh, Zhi Yang; Samanta, Dhrubajyoti; Horton, Benjamin P.; Dauwels, Justin; Chew, Lock Yue. (2023). Monte Carlo Drift Correction – Quantifying the Drift Uncertainty of Global Climate Models. doi:10.5194/egusphere-2022-1515
[92] DOI Sun, Zhe; Archibald, Alexander. (2021). Multi-stage Ensemble-learning-based Model Fusion for Surface Ozone Simulations: A Focus on CMIP6 Models. doi:10.1002/essoar.10507571.1
[93] DOI Lai, En Ning; Wang-Erlandsson, Lan; Virkki, Vili; Porkka, Miina; van der Ent, Ruud J. (2023). Root zone soil moisture in over 25 % of global land permanently beyond pre-industrial variability as early as 2050 without climate policy. doi:10.5194/hess-27-3999-2023
[94] DOI Vrac, Mathieu; Allard, Denis; Mariéthoz, Grégoire; Thao, Soulivanh; Schmutz, Lucas. (2024). Distribution-based pooling for combination and multi-model bias correction of climate simulations. doi:10.5194/esd-15-735-2024
[95] DOI Wilcox, Laura J.; Allen, Robert J.; Samset, Bjørn H.; Bollasina, Massimo A.; Griffiths, Paul T.; Keeble, James M.; Lund, Marianne T.; Makkonen, Risto; Merikanto, Joonas; O'Donnell, Declan; Paynter, David J.; Persad, Geeta G.; Rumbold, Steven T.; Takemura, Toshihiko; Tsigaridis, Kostas; Undorf, Sabine; Westervelt, Daniel M. (2022). The Regional Aerosol Model Intercomparison Project (RAMIP). doi:10.5194/gmd-2022-249
[96] DOI Denissen, Jasper. (2024). Reply on RC1. doi:10.5194/egusphere-2023-1925-ac1
[97] DOI He, Yanfeng; Sudo, Kengo. (2023). Historical (1960–2014) lightning and LNOx trends and their controlling factors in a chemistry–climate model. doi:10.5194/acp-23-13061-2023
[98] DOI Zhang, Yahai; Ye, Aizhong. (2021). Improving Global Gross Primary Productivity Estimation by Fusing Multi-Source Data Products. doi:10.2139/ssrn.3978981
[99] DOI Linke, Olivia; Quaas, Johannes; Baumer, Finja; Becker, Sebastian; Chylik, Jan; Dahlke, Sandro; Ehrlich, André; Handorf, Dörthe; Jacobi, Christoph; Kalesse-Los, Heike; Lelli, Luca; Mehrdad, Sina; Neggers, Roel A. J.; Riebold, Johannes; Saavedra Garfias, Pablo; Schnierstein, Niklas; Shupe, Matthew D.; Smith, Chris; Spreen, Gunnar; Verneuil, Baptiste; Vinjamuri, Kameswara S.; Vountas, Marco; Wendisch, Manfred. (2023). Constraints on simulated past Arctic amplification and lapse-rate feedback from observations. doi:10.5194/acp-2022-836
[100] DOI Denissen, Jasper M. C.; Teuling, Adriaan J.; Koirala, Sujan; Reichstein, Markus; Balsamo, Gianpaolo; Vogel, Martha M.; Yu, Xin; Orth, René. (2024). Intensified future heat extremes linked with increasing ecosystem water limitation. doi:10.5194/esd-15-717-2024
[101] DOI Parry, Isobel; Ritchie, Paul; Cox, Peter. (2023). Evidence of localised Amazon rainforest dieback in CMIP6 models. doi:10.5194/egusphere-egu23-17341
[102] DOI Karmouche, Soufiane; Galytska, Evgenia; Runge, Jakob; Meehl, Gerald A.; Phillips, Adam S.; Weigel, Katja; Eyring, Veronika. (2023). Regime-oriented causal model evaluation of Atlantic–Pacific teleconnections in CMIP6. doi:10.5194/esd-14-309-2023
[103] DOI Siegfried, Tobias; Mujahid, Aziz Ul Haq; Marti, Beatrice; Molnar, Peter; Karger, Dirk Nikolaus; Yakovlev, Andrey. (2024). Unveiling the future water pulse of central asia: a comprehensive 21st century hydrological forecast from stochastic water balance modeling. doi:10.1007/s10584-024-03799-y
[104] DOI Robson, Jon; Sutton, Rowan; Menary, Matthew B.; Lai, Michael W. K. (2023). Overview of models used in the study and additional plots from Contrasting internally and externally generated Atlantic multidecadal variability and the role for AMOC in CMIP6 historical simulations. doi:10.6084/m9.figshare.24100547.v1
[105] DOI Mulcahy, Jane P.; Jones, Colin G.; Rumbold, Steven T.; Kuhlbrodt, Till; Dittus, Andrea J.; Blockley, Edward W.; Yool, Andrew; Walton, Jeremy; Hardacre, Catherine; Andrews, Timothy; Bodas-Salcedo, Alejandro; Stringer, Marc; de Mora, Lee; Harris, Phil; Hill, Richard; Kelley, Doug; Robertson, Eddy; Tang, Yongming. (2023). UKESM1.1: development and evaluation of an updated configuration of the UK Earth System Model. doi:10.5194/gmd-16-1569-2023
[106] DOI PAÇAL, Aytaç; Hassler, Birgit; Weigel, Katja; Kurnaz, Mehmet Levent; Wehner, Michael F; Eyring, Veronika. (2023). Detecting Extreme Temperature Events Using Gaussian Mixture Models. doi:10.22541/essoar.168275876.64237989/v1
[107] DOI Ditkovsky, Sam; Resplandy, Laure; Busecke, Julius. (2023). Unique ocean circulation pathways reshape the Indian Ocean oxygen minimum zone with warming. doi:10.5194/bg-20-4711-2023
[108] DOI Bryden, Harry; Drijfhout, Sybren; Mecking, Jennifer; Hazeleger, Wilco. (2023). Comparing observed and modelled components of the Atlantic Meridional Overturning Circulation at 26°N. doi:10.5194/egusphere-2023-2688
[109] DOI Brown, Flossie; Folberth, Gerd; Sitch, Stephen; Artaxo, Paulo; Bauters, Marijn; Boeckx, Pascal; Cheesman, Alexander W.; Detto, Matteo; Komala, Ninong; Rizzo, Luciana; Rojas, Nestor; dos Santos Vieira, Ines; Turnock, Steven; Verbeeck, Hans; Zambrano, Alfonso. (2024). Performance evaluation of UKESM1 for surface ozone across the pan-tropics. doi:10.5194/egusphere-2023-2937
[110] DOI Woodward, Stephanie; Sellar, Alistair; Tang, Yongming; Stringer, Marc; Yool, Andrew; Robertson, Eddy; Wiltshire, Andy. (2022). The simulation of mineral dust in the United Kingdom Earth System Model UKESM1. doi:10.5194/acp-2022-228
[111] DOI Pysarenko, L.A.; Krakovska, S.V. (2023). The impact of forest cover decrease on the wind regime changes for the territory of Ukraine based on data of the global numerical experiment LUMIP. doi:10.24028/gj.v45i5.289106

Is related to

[1] DOI Büchner, Matthias. (2023). ISIMIP3b ocean input data. doi:10.48364/isimip.575744.3
[2] DOI Lange, Stefan; Quesada-Chacón, Dánnell; Büchner, Matthias. (2023). Secondary ISIMIP3b bias-adjusted atmospheric climate input data. doi:10.48364/isimip.581124.2
[3] DOI Sohail, Taimoor; Zika, Jan D.; Irving, Damien B.; Church, John A. (2022). Observed poleward freshwater transport since 1970. doi:10.1038/s41586-021-04370-w
[4] DOI Lange, Stefan; Quesada-Chacón, Dánnell; Büchner, Matthias. (2023). Secondary ISIMIP3b bias-adjusted atmospheric climate input data. doi:10.48364/isimip.581124.3

Is cited by

[1] DOI Fox-Kemper, B.; Hewitt, H.T.; Xiao, C.; Aðalgeirsdóttir, G.; Drijfhout, S.S.; Edwards, T.L.; Golledge, N.R.; Hemer, M.; Kopp, R.E.; Krinner, G.; Mix, A.; Notz, D.; Nowicki, S.; Nurhati, I.S.; Ruiz, L.; Sallée, J.-B.; Slangen, A.B.A.; Yu, Y. (2023). Ocean, Cryosphere and Sea Level Change. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.011
[2] DOI Lee, J.-Y.; Marotzke, J.; Bala, G.; Cao, L.; Corti, S.; Dunne, J.P.; Engelbrecht, F.; Fischer, E.; Fyfe, J.C; Jones, C.; Maycock, A.; Mutemi, J.; Ndiaye, O.; Panickal, S.; Zhou,T. (2023). Future Global Climate: Scenario-Based Projections and Near-Term Information. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.006
[3] DOI Eyring, V.; Gillett, N.P.; Achuta Rao, K.M.; Barimalala, R.; Barreiro Parrillo, M.; Bellouin, N.; Cassou, C.; Durack, P.J.; Kosaka, Y.; McGregor, S.; Min, S.; Morgenstern, O.; Sun, Y. (2023). Human Influence on the Climate System. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.005
[4] DOI Doblas-Reyes, F.J.; Sörensson, A.A.; Almazroui, M.; Dosio, A.; Gutowski, W.J.; Haarsma, R.; Hamdi, R.; Hewitson, B.; Kwon, W.-T.; Lamptey, B.L.; Maraun, D.; Stephenson, T.S.; Takayabu, I.; Terray, L.; Turner, A.; Zuo, Z. (2023). Linking Global to Regional Climate Change. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.012
[5] DOI Seneviratne, S.I.; Zhang, X.; Adnan, M.; Badi, W.; Dereczynski, C.; Di Luca, A.; Ghosh, S.; Iskandar, I.; Kossin, J.; Lewis, S.; Otto, F.; Pinto, I.; Satoh, M.; Vicente-Serrano, S.M.; Wehner, M.; Zhou, B. (2023). Weather and Climate Extreme Events in a Changing Climate. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.013
[6] DOI Gutiérrez, J.M.; Jones, R.G.; Narisma, G.T.; Alves, L.M.; Amjad, M.; Gorodetskaya, I.V.; Grose, M.; Klutse, N.A.B.; Krakovska, S.; Li, J.; Martínez-Castro, D.; Mearns, L.O.; Mernild, S.H.; Ngo-Duc, T.; van den Hurk, B.; Yoon, J.-H. (2023). Atlas. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change[Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.021
[7] DOI Intergovernmental Panel on Climate Change (IPCC). (2023). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896
[8] DOI Canadell, J.G.; Monteiro, P.M.S; Costa, M.H.; Cotrim da Cunha, L.; Cox, P.M.; Eliseev, A.V.; Henson, S.; Ishii, M.; Jaccard, S.; Koven, C.; Lohila, A.; Patra, P.K.; Piao, S.; Rogelj, J.; Syampungani, S.; Zaehle, S.; Zickfeld, K. (2023). Global Carbon and other Biogeochemical Cycles and Feedbacks. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.007
[9] DOI Szopa, S.; Naik, V.; Adhikary, B.; Artaxo, P.; Berntsen, T.; Collins, W.D.; Fuzzi, S.; Gallardo, L.; Kiendler-Scharr, A.; Klimont, Z.; Liao, H.; Unger, N.; Zanis, P. (2023). Short-Lived Climate Forcers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.008
[10] DOI Douville, H.; Raghavan, K.; Renwick, J.; Allan, R.P.; Arias, P.A.; Barlow, M.; Cerezo-Mota, R.; Cherchi, A.; Gan, T.Y.; Gergis, J.; Jiang, D.; Khan, A.; Pokam Mba, W.; Rosenfeld, D.; Tierney, J.; Zolina, O. (2023). Water Cycle Changes. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.010

Is source of

[1] DOI Lange, Stefan; Büchner, Matthias. (2021). ISIMIP3b bias-adjusted atmospheric climate input data. doi:10.48364/isimip.842396.1
[2] DOI Lange, Stefan; Büchner, Matthias. (2021). ISIMIP3b bias-adjusted atmospheric climate input data. doi:10.48364/isimip.842396
[3] DOI Büchner, Matthias. (2021). ISIMIP3b ocean input data. doi:10.48364/isimip.575744
[4] DOI Lange, Stefan; Büchner, Matthias. (2022). Secondary ISIMIP3b bias-adjusted atmospheric climate input data. doi:10.48364/isimip.581124.1
[5] DOI Büchner, Matthias. (2021). ISIMIP3b ocean input data. doi:10.48364/isimip.575744.2
[6] DOI Lange, Stefan; Büchner, Matthias. (2022). Secondary ISIMIP3b bias-adjusted atmospheric climate input data. doi:10.48364/isimip.581124
[7] DOI Büchner, Matthias. (2021). ISIMIP3b ocean input data. doi:10.48364/isimip.575744.1

Attached Dataset Groups ( 6 )

Search on group level...Details for selected entry
[Entry acronym: C6_4662099] [Entry id: 4662099]