WCRP CMIP6 OMIP NCAR CESM2

Danabasoglu, Gokhan

Experiment
Summary
These data include all datasets published for 'CMIP6.OMIP.NCAR.CESM2' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The CESM2 climate model, released in 2018, includes the following components: aerosol: MAM4 (same grid as atmos), atmos: CAM6 (0.9x1.25 finite volume grid; 288 x 192 longitude/latitude; 32 levels; top level 2.25 mb), atmosChem: MAM4 (same grid as atmos), land: CLM5 (same grid as atmos), landIce: CISM2.1, ocean: POP2 (320x384 longitude/latitude; 60 levels; top grid cell 0-10 m), ocnBgchem: MARBL (same grid as ocean), seaIce: CICE5.1 (same grid as ocean). The model was run by the National Center for Atmospheric Research, Climate and Global Dynamics Laboratory, 1850 Table Mesa Drive, Boulder, CO 80305, USA (NCAR) in native nominal resolutions: aerosol: 100 km, atmos: 100 km, atmosChem: 100 km, land: 100 km, landIce: 5 km, ocean: 100 km, ocnBgchem: 100 km, seaIce: 100 km.

Individuals using the data must abide by terms of use for CMIP6 data (https://pcmdi.llnl.gov/CMIP6/TermsOfUse). The original license restrictions on these datasets were recorded as global attributes in the data files, but these may have been subsequently updated.
Project
CMIP6 (WCRP Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets)
Contact
Gary Strand (
 strandwg@nullucar.edu
0000-0001-9740-0104)
Location(s)
global
Spatial Coverage
Longitude 0 to 360 Latitude -90 to 90
Temporal Coverage
1-01-15 to 373-01-01 (gregorian)
Use constraints
Creative Commons Attribution 4.0 International (CC BY 4.0) (https://creativecommons.org/licenses/by/4.0/)
Data Catalog
World Data Center for Climate
Size
9.06 TiB (9956387144572 Byte)
Format
NetCDF
Status
completely archived
Creation Date
Future Review Date
2033-05-10
Cite as
Danabasoglu, Gokhan (2023). NCAR CESM2 model output prepared for CMIP6 OMIP. World Data Center for Climate (WDCC) at DKRZ. https://www.wdc-climate.de/ui/entry?acronym=C6_4627748

BibTeX RIS
Funding
Description
as consistent as the model(s) CESM2
Contact typePersonORCIDOrganization
-
-

Cites

[1] DOI Computational and Information Systems Laboratory. (0001). Cheyenne: HPE/SGI ICE XA System (Climate Simulation Laboratory). doi:10.5065/D6RX99HX

Is part of

[1] DOI Danabasoglu, Gokhan. (2019). NCAR CESM2 model output prepared for CMIP6 OMIP. doi:10.22033/ESGF/CMIP6.2196

Is referenced by

[1] DOI Wang, Meirong; Wang, Jun; Chen, Deliang; Duan, Anmin; Liu, Yimin; Zhou, Shunwu; Guo, Dong; Wang, Hengmao; Ju, Weimin. (2020). Recent recovery of the boreal spring sensible heating over the Tibetan Plateau will continue in CMIP6 future projections. doi:10.1088/1748-9326/ab57a3
[2] DOI Burke, Eleanor J.; Zhang, Yu; Krinner, Gerhard. (2020). Evaluating permafrost physics in the Coupled Model Intercomparison Project 6 (CMIP6) models and their sensitivity to climate change. doi:10.5194/tc-14-3155-2020
[3] DOI Gaskell, Daniel E.; Huber, Matthew; O’Brien, Charlotte L.; Inglis, Gordon N.; Acosta, R. Paul; Poulsen, Christopher J.; Hull, Pincelli M. (2022). The latitudinal temperature gradient and its climate dependence as inferred from foraminiferal δ18 O over the past 95 million years. doi:10.1073/pnas.2111332119
[4] DOI Saba, Grace K.; Burd, Adrian B.; Dunne, John P.; Hernández‐León, Santiago; Martin, Angela H.; Rose, Kenneth A.; Salisbury, Joseph; Steinberg, Deborah K.; Trueman, Clive N.; Wilson, Rod W.; Wilson, Stephanie E. (2021). Toward a better understanding of fish‐based contribution to ocean carbon flux. doi:10.1002/lno.11709
[5] DOI Treguier, Anne Marie. (2023). Reply on RC2. doi:10.5194/egusphere-2023-310-ac1
[6] DOI Seltzer, Alan M.; Blard, Pierre-Henri; Sherwood, Steven C.; Kageyama, Masa. (2023). Terrestrial amplification of past, present, and future climate change. doi:10.1126/sciadv.adf8119
[7] DOI Boisvert, Linette N.; Boeke, Robyn C.; Taylor, Patrick C.; Parker, Chelsea L. (2022). Constraining Arctic Climate Projections of Wintertime Warming With Surface Turbulent Flux Observations and Representation of Surface-Atmosphere Coupling. doi:10.3389/feart.2022.765304
[8] DOI Bjarke, Nels; Barsugli, Joseph; Livneh, Ben. (2023). Ensemble of CMIP6 derived reference and potential evapotranspiration with radiative and advective components. doi:10.1038/s41597-023-02290-0
[9] DOI Treguier, Anne Marie; de Boyer Montégut, Clement; Bozec, Alexandra; Chassignet, Eric P.; Fox-Kemper, Baylor; McC. Hogg, Andy; Iovino, Doroteaciro; Kiss, Andrew E.; Le Sommer, Julien; Li, Yiwen; Lin, Pengfei; Lique, Camille; Liu, Hailong; Serazin, Guillaume; Sidorenko, Dmitry; Wang, Qiang; Xu, Xiaobio; Yeager, Steve. (2023). The mixed-layer depth in the Ocean Model Intercomparison Project (OMIP): impact of resolving mesoscale eddies. doi:10.5194/gmd-16-3849-2023
[10] DOI Nurser, A.J. George. (2023). Comment on egusphere-2023-310. doi:10.5194/egusphere-2023-310-rc2
[11] DOI MAKINDE, AKINTUNDE Israel; Abiodun, Babatunde J.; James, Rachel; Washington, Richard; Dyer, Ellen; Webb, Tom. (2022). How Well Do CMIP6 Models Simulate the Influence of the West African Westerly Jet on Sahel Precipitation?. doi:10.21203/rs.3.rs-1274137/v1
[12] DOI Eisenman, Ian; Armour, Kyle C. (2024). The radiative feedback continuum from Snowball Earth to an ice-free hothouse. doi:10.1038/s41467-024-50406-w
[13] DOI Treguier, Anne Marie; de Boyer Montégut, Clement; Bozec, Alexandra; Chassignet, Eric P.; Fox-Kemper, Baylor; Hogg, Andy McC.; Iovino, Doroteacino; Kiss, Andrew E.; Le Sommer, Julien; Li, Yiwen; Lin, Pengfei; Lique, Camille; Liu, Hailong; Serazin, Guillaume; Sidorenko, Dmitry; Wang, Qiang; Xu, Xiaobio; Yeager, Steve. (2023). The Mixed Layer Depth in the Ocean Model Intercomparison Project (OMIP): Impact of Resolving Mesoscale Eddies. doi:10.5194/egusphere-2023-310

Is documented by

[1] DOI Danabasoglu, G., Lamarque, J. -F., Bachmeister, J., Bailey, D. A., DuVivier, A. K., Edwards, J., Emmons, L. K., Fasullo, J., Garcia, R., Gettelman, A., Hannay, C., Holland, M. M., Large, W. G., Lawrence, D. M., Lenaerts, J. T. M., Lindsay, K., Lipscomb, W. H., Mills, M. J., Neale, R., Oleson, K. W., Otto-Bliesner, B., Phillips, A. S., Sacks, W., Tilmes, S., van Kampenhout, L., Vertenstein, M., Bertini, A., Dennis, J., Deser, C., Fischer, C., Fox-Kember, B., Kay, J. E., Kinnison, D., Kushner, P. J., Long, M. C., Mickelson, S., Moore, J. K., Nienhouse, E., Polvani, L., Rasch, P. J., Strand, W. G. (0001). The Community Earth System Model version 2 (CESM2). doi:10.1029/2019MS001916

Is related to

[1] DOI Bitz, C. M.; Holland, M. M.; Weaver, A. J.; Eby, M. (1900). Simulating the ice-thickness distribution in a coupled climate model. doi:10.1029/1999jc000113
[2] DOI Feng, Ran; Otto‐Bliesner, Bette L.; Brady, Esther C.; Rosenbloom, Nan. (2020). Increased Climate Response and Earth System Sensitivity From CCSM4 to CESM2 in Mid‐Pliocene Simulations. doi:10.1029/2019ms002033
[3] DOI Rios‐Berrios, R.; Medeiros, B.; Bryan, G. H. (2020). Mean Climate and Tropical Rainfall Variability in Aquaplanet Simulations Using the Model for Prediction Across Scales‐Atmosphere. doi:10.1029/2020ms002102
[4] DOI Community Earth System Model Developers And Affiliates. (2017). Community Earth System Model - CESM2.0. doi:10.5065/d67h1h0v
[5] DOI Rodal, Marie; Krumscheid, Sebastian; Madan, Gaurav; Henry LaCasce, Joseph; Vercauteren, Nikki. (2022). Dynamical stability indicator based on autoregressive moving-average models: Critical transitions and the Atlantic meridional overturning circulation. doi:10.1063/5.0089694
[6] DOI Bercos-Hickey, Emily; Patricola, Christina M.; Gallus, William A. (2021). Anthropogenic Influences on Tornadic Storms. doi:10.1175/jcli-d-20-0901.1

Is cited by

[1] DOI Fox-Kemper, B.; Hewitt, H.T.; Xiao, C.; Aðalgeirsdóttir, G.; Drijfhout, S.S.; Edwards, T.L.; Golledge, N.R.; Hemer, M.; Kopp, R.E.; Krinner, G.; Mix, A.; Notz, D.; Nowicki, S.; Nurhati, I.S.; Ruiz, L.; Sallée, J.-B.; Slangen, A.B.A.; Yu, Y. (2023). Ocean, Cryosphere and Sea Level Change. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.011
[2] DOI Intergovernmental Panel on Climate Change (IPCC). (2023). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896

Attached Dataset Groups ( 2 )

Search on group level...Details for selected entry
[Entry acronym: C6_4627748] [Entry id: 4627748]