Is related to
[1] DOI Fox-Kemper, B.; Hewitt, H.T.; Xiao, C.; Aðalgeirsdóttir, G.; Drijfhout, S.S.; Edwards, T.L.; Golledge, N.R.; Hemer, M.; Kopp, R.E.; Krinner, G.; Mix, A.; Notz, D.; Nowicki, S.; Nurhati, I.S.; Ruiz, L.; Sallée, J.-B.; Slangen, A.B.A.; Yu, Y.
(2023).
Ocean, Cryosphere and Sea Level Change. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change
[Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I.
Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B.
Zhou (eds.)]. doi:10.1017/9781009157896.011 [2] DOI Duffy, Margaret L.; O’Gorman, Paul A.
(2022).
Intermodel Spread in Walker Circulation Responses Linked to Spread in Moist Stability and Radiation Responses. doi:10.1029/2022jd037382 Is referenced by
[1] DOI McKenna, Christine M.; Maycock, Amanda C.; Forster, Piers M.; Smith, Christopher J.; Tokarska, Katarzyna B.
(2020).
Stringent mitigation substantially reduces risk of unprecedented near-term warming rates. doi:10.1038/s41558-020-00957-9 [2] DOI Shu, Qi; Song, Zhenya; Bao, Ying; Yang, Xiaodan; Song, Yajuan; Li, Xinfang; Wei, Meng; Qiao, Fangli.
(2022).
FIO-ESM v2.0 CORE2-forced experiment for the CMIP6 Ocean Model Intercomparison Project. doi:10.1007/s13131-022-2000-x [3] DOI Correa, Wesley de Souza Campos; Soares, Wagner Rodrigues; Aylas, Georgynio Yossimar Rosales; Reis Junior, Neyval Costa; Marengo, José Antonio; Chou, Sin Chan; Nobre, Carlos.
(2023).
Avaliação das simulações de temperatura e precipitação de um subconjunto de modelos do CMIP6 para o Brasil. doi:10.14295/derb.v43.774 [4] DOI Seltzer, Alan M.; Blard, Pierre-Henri; Sherwood, Steven C.; Kageyama, Masa.
(2023).
Terrestrial amplification of past, present, and future climate change. doi:10.1126/sciadv.adf8119 [5] DOI Boisvert, Linette N.; Boeke, Robyn C.; Taylor, Patrick C.; Parker, Chelsea L.
(2022).
Constraining Arctic Climate Projections of Wintertime Warming With Surface Turbulent Flux Observations and Representation of Surface-Atmosphere Coupling. doi:10.3389/feart.2022.765304 [6] DOI Olusegun, Christiana; Ojo, Olusola; Olusola, Adeyemi; Ogunjo, Samuel.
(2023).
Solar radiation variability across Nigeria’s climatic zones: a validation and projection study with CORDEX, CMIP5, and CMIP6 models. doi:10.1007/s40808-023-01848-6 [7] DOI Lotfirad, Morteza; Adib, Arash; Riyahi, Mohammad Mehdi; Jafarpour, Mohammad.
(2022).
Evaluating the effects of CMIP6 model uncertainty on extreme flows of the Caspian Hyrcanian forest watersheds by BMA method. doi:10.21203/rs.3.rs-1479406/v1 [8] DOI Lotfirad, Morteza; Adib, Arash; Riyahi, Mohammad Mehdi; Jafarpour, Mohammad.
(2022).
Evaluating the effect of the uncertainty of CMIP6 models on extreme flows of the Caspian Hyrcanian forest watersheds using the BMA method. doi:10.1007/s00477-022-02269-0 [9] DOI MAKINDE, AKINTUNDE Israel; Abiodun, Babatunde J.; James, Rachel; Washington, Richard; Dyer, Ellen; Webb, Tom.
(2022).
How Well Do CMIP6 Models Simulate the Influence of the West African Westerly Jet on Sahel Precipitation?. doi:10.21203/rs.3.rs-1274137/v1 [10] DOI Diamond, Rachel; Sime, Louise C.; Holmes, Caroline R.; Schroeder, David.
(2024).
CMIP6 Models Rarely Simulate Antarctic Winter Sea‐Ice Anomalies as Large as Observed in 2023. doi:10.1029/2024gl109265