WCRP CMIP6 ScenarioMIP CMCC CMCC-CM2-SR5

Lovato, Tomas; Peano, Daniele

Experiment
Summary
These data include all datasets published for 'CMIP6.ScenarioMIP.CMCC.CMCC-CM2-SR5' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The CMCC-CM2-SR5 climate model, released in 2016, includes the following components: aerosol: MAM3, atmos: CAM5.3 (1deg; 288 x 192 longitude/latitude; 30 levels; top at ~2 hPa), land: CLM4.5 (BGC mode), ocean: NEMO3.6 (ORCA1 tripolar primarly 1 deg lat/lon with meridional refinement down to 1/3 degree in the tropics; 362 x 292 longitude/latitude; 50 vertical levels; top grid cell 0-1 m), seaIce: CICE4.0. The model was run by the Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici, Lecce 73100, Italy (CMCC) in native nominal resolutions: aerosol: 100 km, atmos: 100 km, land: 100 km, ocean: 100 km, seaIce: 100 km.

Individuals using the data must abide by terms of use for CMIP6 data (https://pcmdi.llnl.gov/CMIP6/TermsOfUse). The original license restrictions on these datasets were recorded as global attributes in the data files, but these may have been subsequently updated.
Project
CMIP6 (WCRP Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets)
Contact
Tomas Lovato (
 tomas.lovato@nullcmcc.it
0000-0002-5188-6767)
Location(s)
global
Spatial Coverage
Longitude 0 to 360 Latitude -90 to 90
Temporal Coverage
2015-01-01 to 2101-01-01 (gregorian)
Use constraints
Creative Commons Attribution 4.0 International (https://creativecommons.org/licenses/by/4.0/)
Data Catalog
World Data Center for Climate
Size
2.34 TiB (2570649617944 Byte)
Format
NetCDF
Status
completely archived
Creation Date
Future Review Date
2033-04-15
Cite as
Lovato, Tomas; Peano, Daniele (2023). CMCC CMCC-CM2-SR5 model output prepared for CMIP6 ScenarioMIP. World Data Center for Climate (WDCC) at DKRZ. https://www.wdc-climate.de/ui/entry?acronym=C6_4370560

BibTeX RIS
Description
as consistent as the model(s) CMCC-CM2-SR5
Description
All TQA checks were passed for WCRP CMIP6 ScenarioMIP CMCC CMCC-CM2-SR5.
Method
CMIP6-TQA Checks
Method Description
Checks performed by WDCC. CMIP6-TQA metrics are documented: https://redmine.dkrz.de/projects/cmip6-lta-and-data-citation/wiki/Quality_Checks
Method Url
Result Date
2025-10-23
Contact typePersonORCIDOrganization
-

Is part of

[1] DOI Lovato, Tomas; Peano, Daniele. (2020). CMCC CMCC-CM2-SR5 model output prepared for CMIP6 ScenarioMIP. doi:10.22033/ESGF/CMIP6.1365

Is referenced by

[1] DOI Liu, Jianzhao; Yuan, Fenghui; Zuo, Yunjiang; Zhou, Rui; Zhu, Xinhao; Li, Kexin; Wang, Nannan; Chen, Ning; Guo, Ziyu; Zhang, Lihua; Sun, Ying; Guo, Yuedong; Song, Changchun; Xu, Xiaofeng. (2022). Warming-induced vegetation growth cancels out soil carbon-climate feedback in the northern Asian permafrost region in the 21st century. doi:10.1088/1748-9326/ac7eda
[2] DOI Anderegg, William R. L.; Wu, Chao; Acil, Nezha; Carvalhais, Nuno; Pugh, Thomas A. M.; Sadler, Jon P.; Seidl, Rupert. (2022). A climate risk analysis of Earth’s forests in the 21st century. doi:10.1126/science.abp9723
[3] DOI Rivera, Paris. (2023). Climate change projections in Guatemala: temperature and precipitation changes according to CMIP6 models. doi:10.1007/s40808-023-01881-5
[4] DOI Olson, Roman; Kim, Soong-Ki; Fan, Yanan; An, Soon-Il. (2022). Probabilistic projections of El Niño Southern Oscillation properties accounting for model dependence and skill. doi:10.1038/s41598-022-26513-3
[5] DOI Seltzer, Alan M.; Blard, Pierre-Henri; Sherwood, Steven C.; Kageyama, Masa. (2023). Terrestrial amplification of past, present, and future climate change. doi:10.1126/sciadv.adf8119
[6] DOI Moses, O. (2024). Projected changes in rainfall and temperature using CMIP6 models over the Okavango River basin, southern Africa. doi:10.1007/s00704-024-04950-6
[7] DOI Rettie, Fasil M.; Gayler, Sebastian; Weber, Tobias K. D.; Tesfaye, Kindie; Streck, Thilo. (2023). High-resolution CMIP6 climate projections for Ethiopia using the gridded statistical downscaling method. doi:10.1038/s41597-023-02337-2
[8] DOI Malles, Jan-Hendrik. (2023). Past to Future and Land to Sea: constraining global glacier models by observations and exploring ice-ocean interactions. doi:10.26092/elib/2323
[9] DOI Hsu, Hsin; Dirmeyer, Paul A. (2023). Uncertainty in projected critical soil moisture values in CMIP6 affects the interpretation of a more moisture-limited world. doi:10.22541/essoar.167810145.51830543/v1
[10] DOI Bryden, Harry. (2024). Comment on egusphere-2023-2688. doi:10.5194/egusphere-2023-2688-ac4
[11] DOI Li, Juan; Zhao, Yuexuan; Wang, Menglu; Tan, Wei; Yin, Jiyuan. (2024). Projected Changes of Wind Energy Input to Surface Waves in the North Indian Ocean Based on CMIP6. doi:10.3390/atmos15010139
[12] DOI Hsu, Hsin; Dirmeyer, Paul A. (2023). Uncertainty in Projected Critical Soil Moisture Values in CMIP6 Affects the Interpretation of a More Moisture‐Limited World. doi:10.1029/2023ef003511
[13] DOI Bryden, Harry; Drijfhout, Sybren; Mecking, Jennifer; Hazeleger, Wilco. (2023). Comparing observed and modelled components of the Atlantic Meridional Overturning Circulation at 26°N. doi:10.5194/egusphere-2023-2688

References

[1] DOI Cherchi, A.; Fogli, P. G.; Lovato, T.; Peano, D.; Iovino, D.; Gualdi, S.; Masina, S.; Scoccimarro, E.; Materia, S.; Bellucci, A.; Navarra, A. (2019). Global mean climate and main patterns of variability in the CMCC‐CM2 coupled model. doi:10.1029/2018ms001369

Is cited by

[1] DOI Fox-Kemper, B.; Hewitt, H.T.; Xiao, C.; Aðalgeirsdóttir, G.; Drijfhout, S.S.; Edwards, T.L.; Golledge, N.R.; Hemer, M.; Kopp, R.E.; Krinner, G.; Mix, A.; Notz, D.; Nowicki, S.; Nurhati, I.S.; Ruiz, L.; Sallée, J.-B.; Slangen, A.B.A.; Yu, Y. (2023). Ocean, Cryosphere and Sea Level Change. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.011
[2] DOI Lee, J.-Y.; Marotzke, J.; Bala, G.; Cao, L.; Corti, S.; Dunne, J.P.; Engelbrecht, F.; Fischer, E.; Fyfe, J.C; Jones, C.; Maycock, A.; Mutemi, J.; Ndiaye, O.; Panickal, S.; Zhou,T. (2023). Future Global Climate: Scenario-Based Projections and Near-Term Information. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.006
[3] DOI Eyring, V.; Gillett, N.P.; Achuta Rao, K.M.; Barimalala, R.; Barreiro Parrillo, M.; Bellouin, N.; Cassou, C.; Durack, P.J.; Kosaka, Y.; McGregor, S.; Min, S.; Morgenstern, O.; Sun, Y. (2023). Human Influence on the Climate System. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.005
[4] DOI Doblas-Reyes, F.J.; Sörensson, A.A.; Almazroui, M.; Dosio, A.; Gutowski, W.J.; Haarsma, R.; Hamdi, R.; Hewitson, B.; Kwon, W.-T.; Lamptey, B.L.; Maraun, D.; Stephenson, T.S.; Takayabu, I.; Terray, L.; Turner, A.; Zuo, Z. (2023). Linking Global to Regional Climate Change. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.012
[5] DOI Seneviratne, S.I.; Zhang, X.; Adnan, M.; Badi, W.; Dereczynski, C.; Di Luca, A.; Ghosh, S.; Iskandar, I.; Kossin, J.; Lewis, S.; Otto, F.; Pinto, I.; Satoh, M.; Vicente-Serrano, S.M.; Wehner, M.; Zhou, B. (2023). Weather and Climate Extreme Events in a Changing Climate. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.013
[6] DOI Gutiérrez, J.M.; Jones, R.G.; Narisma, G.T.; Alves, L.M.; Amjad, M.; Gorodetskaya, I.V.; Grose, M.; Klutse, N.A.B.; Krakovska, S.; Li, J.; Martínez-Castro, D.; Mearns, L.O.; Mernild, S.H.; Ngo-Duc, T.; van den Hurk, B.; Yoon, J.-H. (2023). Atlas. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change[Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.021
[7] DOI Intergovernmental Panel on Climate Change (IPCC). (2023). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896
[8] DOI Wang, Shizhu; Wang, Qiang; Wang, Muyin; Lohmann, Gerrit; Qiao, Fangli. (2022). Arctic Ocean Freshwater in CMIP6 Coupled Models. doi:10.1029/2022ef002878
[9] DOI Douville, H.; Raghavan, K.; Renwick, J.; Allan, R.P.; Arias, P.A.; Barlow, M.; Cerezo-Mota, R.; Cherchi, A.; Gan, T.Y.; Gergis, J.; Jiang, D.; Khan, A.; Pokam Mba, W.; Rosenfeld, D.; Tierney, J.; Zolina, O. (2023). Water Cycle Changes. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.010
[10] DOI Malles, Jan-Hendrik; Maussion, Fabien; Ultee, Lizz; Kochtitzky, William; Copland, Luke; Marzeion, Ben. (2023). Exploring the impact of a frontal ablation parameterization on projected 21st-century mass change for Northern Hemisphere glaciers. doi:10.1017/jog.2023.19
[11] DOI Linke, Olivia; Feldl, Nicole; Quaas, Johannes. (2023). Current-climate sea ice amount and seasonality as constraints for future Arctic amplification. doi:10.1088/2752-5295/acf4b7
[12] DOI Olusegun, Christiana; Ojo, Olusola; Olusola, Adeyemi; Ogunjo, Samuel. (2023). Solar radiation variability across Nigeria’s climatic zones: a validation and projection study with CORDEX, CMIP5, and CMIP6 models. doi:10.1007/s40808-023-01848-6

Attached Dataset Groups ( 4 )

Search on group level...Details for selected entry
[Entry acronym: C6_4370560] [Entry id: 4370560]