WCRP CMIP6 ScenarioMIP BCC BCC-CSM2-MR

Xin, Xiaoge et al.

Experiment
Summary
These data include all datasets published for 'CMIP6.ScenarioMIP.BCC.BCC-CSM2-MR' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The BCC-CSM 2 MR climate model, released in 2017, includes the following components: atmos: BCC_AGCM3_MR (T106; 320 x 160 longitude/latitude; 46 levels; top level 1.46 hPa), land: BCC_AVIM2, ocean: MOM4 (1/3 deg 10S-10N, 1/3-1 deg 10-30 N/S, and 1 deg in high latitudes; 360 x 232 longitude/latitude; 40 levels; top grid cell 0-10 m), seaIce: SIS2. The model was run by the Beijing Climate Center, Beijing 100081, China (BCC) in native nominal resolutions: atmos: 100 km, land: 100 km, ocean: 50 km, seaIce: 50 km.

Individuals using the data must abide by terms of use for CMIP6 data (https://pcmdi.llnl.gov/CMIP6/TermsOfUse). The original license restrictions on these datasets were recorded as global attributes in the data files, but these may have been subsequently updated.
Project
CMIP6 (WCRP Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets)
Contact
Prof. Xiaoge Xin (
 xinxg@nullcma.gov.cn
)
Location(s)
global
Spatial Coverage
Longitude 0 to 360 Latitude -90 to 90
Temporal Coverage
2015-01-16 to 2100-12-16 (gregorian)
Use constraints
Creative Commons Attribution 4.0 International (https://creativecommons.org/licenses/by/4.0/)
Data Catalog
World Data Center for Climate
Size
12.73 TiB (13991602054940 Byte)
Format
NetCDF
Status
completely archived
Creation Date
Review Date
2023-04-06
Cite as
Xin, Xiaoge; Wu, Tongwen; Shi, Xueli; Zhang, Fang; Li, Jianglong; Chu, Min; Liu, Qianxia; Yan, Jinghui; Ma, Qiang; Wei, Min (2023). BCC BCC-CSM2MR model output prepared for CMIP6 ScenarioMIP. World Data Center for Climate (WDCC) at DKRZ. https://www.wdc-climate.de/ui/entry?acronym=C6_4119519

BibTeX RIS
Description
as consistent as the model(s) BCC-CSM2-MR
Description
All TQA checks were passed for WCRP CMIP6 ScenarioMIP BCC BCC-CSM2-MR.
Method
CMIP6-TQA Checks
Method Description
Checks performed by WDCC. CMIP6-TQA metrics are documented: https://redmine.dkrz.de/projects/cmip6-lta-and-data-citation/wiki/Quality_Checks
Method Url
Result Date
2025-10-23
Contact typePersonORCIDOrganization
-
-
-
-
-
-
-
-
-
-
-

Cites

[1] DOI Wu, T., Lu, Y., Fang, Y., Xin, X., Li, L., Li, W., Jie, W., Zhang, J., Liu, Y., Zhang, L., Zhang, F., Zhang, Y., Wu, F., Li, J., Chu, M., Wang, Z., Shi, X., Liu, X., Wei, M., Huang, A., Zhang, Y., and Liu, X. (2019). The Beijing Climate Center Climate System Model (BCC-CSM): the main progress from CMIP5 to CMIP6. doi:10.5194/gmd-12-1573-2019

Is part of

[1] DOI Xin, Xiaoge; Wu, Tongwen; Shi, Xueli; Zhang, Fang; Li, Jianglong; Chu, Min; Liu, Qianxia; Yan, Jinghui; Ma, Qiang; Wei, Min. (2019). BCC BCC-CSM2MR model output prepared for CMIP6 ScenarioMIP. doi:10.22033/ESGF/CMIP6.1732

Is referenced by

[1] DOI McKenna, Christine M.; Maycock, Amanda C.; Forster, Piers M.; Smith, Christopher J.; Tokarska, Katarzyna B. (2020). Stringent mitigation substantially reduces risk of unprecedented near-term warming rates. doi:10.1038/s41558-020-00957-9
[2] DOI O'Brien, Travis Allen; Wehner, Michael F; Payne, Ashley E.; Shields, Christine A; Rutz, Jonathan J.; Leung, L. Ruby; Ralph, F. Martin; Marquardt Collow, Allison B.; Guan, Bin; Lora, Juan Manuel; McClenny, Elizabeth; Nardi, Kyle M.; Ramos, Alexandre M.; Tomé, Ricardo; Sarangi, Chandan; Shearer, Eric Jay; Ullrich, Paul; Zarzycki, Colin M.; Loring, Burlen; Huang, Huanping; Inda Díaz, Héctor Alejandro; Rhoades, Alan M.; Zhou, Yang. (2020). Increases in Future AR Count and Size: Overview of the ARTMIP Tier 2 CMIP5/6 Experiment. doi:10.1002/essoar.10504170.1
[3] DOI Zhang, Kequan; Duan, Jiakang; Zhao, Siyi; Zhang, Jiankai; Keeble, James; Liu, Hongwen. (2021). Evaluating the Ozone Valley over the Tibetan Plateau in CMIP6 Models. doi:10.1007/s00376-021-0442-2
[4] DOI Lalande, Mickaël; Ménégoz, Martin; Krinner, Gerhard; Naegeli, Kathrin; Wunderle, Stefan. (2021). Climate change in the High Mountain Asia in CMIP6. doi:10.5194/esd-2021-43
[5] DOI Liu, Jianzhao; Yuan, Fenghui; Zuo, Yunjiang; Zhou, Rui; Zhu, Xinhao; Li, Kexin; Wang, Nannan; Chen, Ning; Guo, Ziyu; Zhang, Lihua; Sun, Ying; Guo, Yuedong; Song, Changchun; Xu, Xiaofeng. (2022). Warming-induced vegetation growth cancels out soil carbon-climate feedback in the northern Asian permafrost region in the 21st century. doi:10.1088/1748-9326/ac7eda
[6] DOI O'Brien, Travis Allen; Wehner, Michael F; Payne, Ashley E.; Shields, Christine A; Rutz, Jonathan J.; Leung, L. Ruby; Ralph, F. Martin; Marquardt Collow, Allison B.; Gorodetskaya, Irina; Guan, Bin; Lora, Juan Manuel; McClenny, Elizabeth; Nardi, Kyle M.; Ramos, Alexandre M.; Tomé, Ricardo; Sarangi, Chandan; Shearer, Eric Jay; Ullrich, Paul; Zarzycki, Colin M.; Loring, Burlen; Huang, Huanping; Inda Díaz, Héctor Alejandro; Rhoades, Alan M.; Zhou, Yang. (2021). Increases in Future AR Count and Size: Overview of the ARTMIP Tier 2 CMIP5/6 Experiment. doi:10.1002/essoar.10504170.2
[7] DOI Bonnin, Lucas; Tran, Annelise; Herbreteau, Vincent; Marcombe, Sébastien; Boyer, Sébastien; Mangeas, Morgan; Menkes, Christophe. (2022). Predicting the Effects of Climate Change on Dengue Vector Densities in Southeast Asia through Process-Based Modeling. doi:10.1289/ehp11068
[8] DOI Atanaw, Simir B.; Zimale, Fasikaw A.; Ayenew, Tenalem; Ayele, Gebiaw T. (2023). Modeling future hydrological responses through parameter optimization and climate change scenarios in Dirima Watershed, Ethiopia. doi:10.1007/s40808-023-01817-z
[9] DOI Rivera, Paris. (2023). Climate change projections in Guatemala: temperature and precipitation changes according to CMIP6 models. doi:10.1007/s40808-023-01881-5
[10] DOI Seltzer, Alan M.; Blard, Pierre-Henri; Sherwood, Steven C.; Kageyama, Masa. (2023). Terrestrial amplification of past, present, and future climate change. doi:10.1126/sciadv.adf8119
[11] DOI Qiu, Han; Hao, Dalei; Zeng, Yelu; Zhang, Xuesong; Chen, Min. (2023). Global and northern-high-latitude net ecosystem production in the 21st century from CMIP6 experiments. doi:10.5194/esd-14-1-2023
[12] DOI :unav. (2022). Earth s Future - 2021 - Marvel - Projected Changes to Hydroclimate Seasonality in the Continental United States.pdf. doi:10.7916/zz52-w961
[13] DOI Malles, Jan-Hendrik. (2023). Past to Future and Land to Sea: constraining global glacier models by observations and exploring ice-ocean interactions. doi:10.26092/elib/2323
[14] DOI Marvel, Kate; Cook, Benjamin I.; Bonfils, Céline; Smerdon, Jason E.; Williams, A. Park; Liu, Haibo. (2021). Projected Changes to Hydroclimate Seasonality in the Continental United States. doi:10.1029/2021ef002019
[15] DOI Sellevold, Raymond; Vizcaino, Miren. (2021). First Application of Artificial Neural Networks to Estimate 21st Century Greenland Ice Sheet Surface Melt. doi:10.1029/2021gl092449
[16] DOI Li, Juan; Zhao, Yuexuan; Wang, Menglu; Tan, Wei; Yin, Jiyuan. (2024). Projected Changes of Wind Energy Input to Surface Waves in the North Indian Ocean Based on CMIP6. doi:10.3390/atmos15010139

Is cited by

[1] DOI Fox-Kemper, B.; Hewitt, H.T.; Xiao, C.; Aðalgeirsdóttir, G.; Drijfhout, S.S.; Edwards, T.L.; Golledge, N.R.; Hemer, M.; Kopp, R.E.; Krinner, G.; Mix, A.; Notz, D.; Nowicki, S.; Nurhati, I.S.; Ruiz, L.; Sallée, J.-B.; Slangen, A.B.A.; Yu, Y. (2023). Ocean, Cryosphere and Sea Level Change. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.011
[2] DOI Lee, J.-Y.; Marotzke, J.; Bala, G.; Cao, L.; Corti, S.; Dunne, J.P.; Engelbrecht, F.; Fischer, E.; Fyfe, J.C; Jones, C.; Maycock, A.; Mutemi, J.; Ndiaye, O.; Panickal, S.; Zhou,T. (2023). Future Global Climate: Scenario-Based Projections and Near-Term Information. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.006
[3] DOI Eyring, V.; Gillett, N.P.; Achuta Rao, K.M.; Barimalala, R.; Barreiro Parrillo, M.; Bellouin, N.; Cassou, C.; Durack, P.J.; Kosaka, Y.; McGregor, S.; Min, S.; Morgenstern, O.; Sun, Y. (2023). Human Influence on the Climate System. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.005
[4] DOI Doblas-Reyes, F.J.; Sörensson, A.A.; Almazroui, M.; Dosio, A.; Gutowski, W.J.; Haarsma, R.; Hamdi, R.; Hewitson, B.; Kwon, W.-T.; Lamptey, B.L.; Maraun, D.; Stephenson, T.S.; Takayabu, I.; Terray, L.; Turner, A.; Zuo, Z. (2023). Linking Global to Regional Climate Change. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.012
[5] DOI Seneviratne, S.I.; Zhang, X.; Adnan, M.; Badi, W.; Dereczynski, C.; Di Luca, A.; Ghosh, S.; Iskandar, I.; Kossin, J.; Lewis, S.; Otto, F.; Pinto, I.; Satoh, M.; Vicente-Serrano, S.M.; Wehner, M.; Zhou, B. (2023). Weather and Climate Extreme Events in a Changing Climate. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.013
[6] DOI Gutiérrez, J.M.; Jones, R.G.; Narisma, G.T.; Alves, L.M.; Amjad, M.; Gorodetskaya, I.V.; Grose, M.; Klutse, N.A.B.; Krakovska, S.; Li, J.; Martínez-Castro, D.; Mearns, L.O.; Mernild, S.H.; Ngo-Duc, T.; van den Hurk, B.; Yoon, J.-H. (2023). Atlas. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change[Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.021
[7] DOI Intergovernmental Panel on Climate Change (IPCC). (2023). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896
[8] DOI Lavoie, Juliette; Bourgault, Pascal; Logan, Travis; Caron, Louis-Philippe; Gammon, Sarah; Smith, Trevor James; Biner, Sébastien; Braun, Marco. (2023). ESPO-G6-R2 : Ensemble de scénarios polyvalents d'Ouranos - Modèles Globaux CMIP6 - RDRS v2.1 / Ouranos Multipurpose Climate Scenarios - Global models CMIP6 - RDRS v2.1. doi:10.5281/zenodo.7764928
[9] DOI Lavoie, Juliette; Bourgault, Pascal; Logan, Travis; Caron, Louis-Philippe; Gammon, Sarah; Smith, Trevor James; Biner, Sébastien; Leduc, Martin. (2023). ESPO-G6-E5L : Ensemble de scénarios polyvalents d'Ouranos - Modèles Globaux CMIP6 - ERA5-Land / Ouranos Multipurpose Climate Scenarios - Global Models CMIP6 - ERA5-Land. doi:10.5281/zenodo.7764929
[10] DOI Douville, H.; Raghavan, K.; Renwick, J.; Allan, R.P.; Arias, P.A.; Barlow, M.; Cerezo-Mota, R.; Cherchi, A.; Gan, T.Y.; Gergis, J.; Jiang, D.; Khan, A.; Pokam Mba, W.; Rosenfeld, D.; Tierney, J.; Zolina, O. (2023). Water Cycle Changes. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.010
[11] DOI Wu, Tongwen; Lu, Yixiong; Fang, Yongjie; Xin, Xiaoge; Li, Laurent; Li, Weiping; Jie, Weihua; Zhang, Jie; Liu, Yiming; Zhang, Li; Zhang, Fang; Zhang, Yanwu; Wu, Fanghua; Li, Jianglong; Chu, Min; Wang, Zaizhi; Shi, Xueli; Liu, Xiangwen; Wei, Min; Huang, Anning; Zhang, Yaocun; Liu, Xiaohong. (2018). The Beijing Climate Center Climate System Model (BCC-CSM): Main Progress from CMIP5 to CMIP6. doi:10.5194/gmd-2018-254
[12] DOI Malles, Jan-Hendrik; Maussion, Fabien; Ultee, Lizz; Kochtitzky, William; Copland, Luke; Marzeion, Ben. (2023). Exploring the impact of a frontal ablation parameterization on projected 21st-century mass change for Northern Hemisphere glaciers. doi:10.1017/jog.2023.19
[13] DOI Linke, Olivia; Feldl, Nicole; Quaas, Johannes. (2023). Current-climate sea ice amount and seasonality as constraints for future Arctic amplification. doi:10.1088/2752-5295/acf4b7
[14] DOI Lalande, Mickaël; Ménégoz, Martin; Krinner, Gerhard; Naegeli, Kathrin; Wunderle, Stefan. (2021). Climate change in the High Mountain Asia in CMIP6. doi:10.5194/esd-12-1061-2021
[15] DOI Yalcin, Emrah. (2023). Quantifying climate change impacts on hydropower production under CMIP6 multi-model ensemble projections using SWAT model. doi:10.1080/02626667.2023.2245815

Attached Dataset Groups ( 4 )

Search on group level...Details for selected entry
[Entry acronym: C6_4119519] [Entry id: 4119519]