WCRP CMIP6 CMIP BCC BCC-CSM2-MR piControl

Wu, Tongwen et al.

Dataset Group
Summary
These data include all datasets published for 'CMIP6.CMIP.BCC.BCC-CSM2-MR.piControl' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The BCC-CSM 2 MR climate model, released in 2017, includes the following components: atmos: BCC_AGCM3_MR (T106; 320 x 160 longitude/latitude; 46 levels; top level 1.46 hPa), land: BCC_AVIM2, ocean: MOM4 (1/3 deg 10S-10N, 1/3-1 deg 10-30 N/S, and 1 deg in high latitudes; 360 x 232 longitude/latitude; 40 levels; top grid cell 0-10 m), seaIce: SIS2. The model was run by the Beijing Climate Center, Beijing 100081, China (BCC) in native nominal resolutions: atmos: 100 km, land: 100 km, ocean: 50 km, seaIce: 50 km.

Individuals using the data must abide by terms of use for CMIP6 data (https://pcmdi.llnl.gov/CMIP6/TermsOfUse). The original license restrictions on these datasets were recorded as global attributes in the data files, but these may have been subsequently updated.
Project
CMIP6 (WCRP Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets)
Contact
Tongwen Wu (
 twwu@nullcma.gov.cn
)
Location(s)
global
Spatial Coverage
Longitude 0 to 360 Latitude -90 to 90
Temporal Coverage
1850-01-16 to 2449-12-16 (gregorian)
Use constraints
Creative Commons Attribution 4.0 International (CC BY 4.0) (https://creativecommons.org/licenses/by/4.0/)
Data Catalog
World Data Center for Climate
Size
1.46 TiB (1608491492420 Byte)
Format
NetCDF
Status
completely archived
Creation Date
Future Review Date
2033-04-06
Cite as
Wu, Tongwen; Chu, Min; Dong, Min; Fang, Yongjie; Jie, Weihua; Li, Jianglong; Li, Weiping; Liu, Qianxia; Shi, Xueli; Xin, Xiaoge; Yan, Jinghui; Zhang, Fang; Zhang, Jie; Zhang, Li; Zhang, Yanwu (2023). BCC BCC-CSM2MR model output prepared for CMIP6 CMIP piControl. World Data Center for Climate (WDCC) at DKRZ. https://www.wdc-climate.de/ui/entry?acronym=C6_4101197

BibTeX RIS
Description
as consistent as the model(s) BCC-CSM2-MR
Description
All TQA checks were passed for WCRP CMIP6 CMIP BCC BCC-CSM2-MR piControl.
Method
CMIP6-TQA Checks
Method Description
Checks performed by WDCC. CMIP6-TQA metrics are documented: https://redmine.dkrz.de/projects/cmip6-lta-and-data-citation/wiki/Quality_Checks
Method Url
Result Date
2025-03-18
Contact typePersonORCIDOrganization
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Is part of

[1] DOI Wu, Tongwen; Chu, Min; Dong, Min; Fang, Yongjie; Jie, Weihua; Li, Jianglong; Li, Weiping; Liu, Qianxia; Shi, Xueli; Xin, Xiaoge; Yan, Jinghui; Zhang, Fang; Zhang, Jie; Zhang, Li; Zhang, Yanwu. (2018). BCC BCC-CSM2MR model output prepared for CMIP6 CMIP piControl. doi:10.22033/ESGF/CMIP6.3016

Is referenced by

[1] DOI McKenna, Christine M.; Maycock, Amanda C.; Forster, Piers M.; Smith, Christopher J.; Tokarska, Katarzyna B. (2020). Stringent mitigation substantially reduces risk of unprecedented near-term warming rates. doi:10.1038/s41558-020-00957-9
[2] DOI Hamed, Mohammed Magdy; Nashwan, Mohamed Salem; Shahid, Shamsuddin; Ismail, Tarmizi bin; Dewan, Ashraf; Asaduzzaman, Md. (2022). Thermal bioclimatic indicators over Southeast Asia: present status and future projection using CMIP6. doi:10.1007/s11356-022-22036-6
[3] DOI Irving, Damien; Hobbs, Will; Church, John; Zika, Jan. (2020). A Mass and Energy Conservation Analysis of Drift in the CMIP6 Ensemble. doi:10.1175/jcli-d-20-0281.1
[4] DOI Vrac, Mathieu; Thao, Soulivanh; Yiou, Pascal. (2022). Should multivariate bias corrections of climate simulations account for changes of rank correlation over time?. doi:10.1002/essoar.10510318.1
[5] DOI Vrac, Mathieu; Thao, Soulivanh; Yiou, Pascal. (2022). Changes in temperature–precipitation correlations over Europe: are climate models reliable?. doi:10.1007/s00382-022-06436-5
[6] DOI Yiou, Pascal; Faranda, Davide; Thao, Soulivanh; Vrac, Mathieu. (2021). Projected Changes in the Atmospheric Dynamics of Climate Extremes in France. doi:10.3390/atmos12111440
[7] DOI Liu, Meng; Yang, Linqing. (2022). Northward expansion of fire-adaptative vegetation in future warming. doi:10.1088/1748-9326/ac417d
[8] DOI Rogers, Matthew H.; Furtado, Jason; Anderson, Bruce. (2021). The Pacific Decadal Precession and its Relationship to Tropical Pacific Decadal Variability in CMIP6 Models. doi:10.21203/rs.3.rs-390152/v1
[9] DOI Ghajarnia, Navid; Kalantari, Zahra; Destouni, Georgia. (2021). Data‐Driven Worldwide Quantification of Large‐Scale Hydroclimatic Covariation Patterns and Comparison With Reanalysis and Earth System Modeling. doi:10.1029/2020wr029377
[10] DOI Correa, Wesley de Souza Campos; Soares, Wagner Rodrigues; Aylas, Georgynio Yossimar Rosales; Reis Junior, Neyval Costa; Marengo, José Antonio; Chou, Sin Chan; Nobre, Carlos. (2023). Avaliação das simulações de temperatura e precipitação de um subconjunto de modelos do CMIP6 para o Brasil. doi:10.14295/derb.v43.774
[11] DOI Niazkar, Majid; Goodarzi, Mohammad Reza; Fatehifar, Atiyeh; Abedi, Mohammad Javad. (2022). Machine learning-based downscaling: application of multi-gene genetic programming for downscaling daily temperature at Dogonbadan, Iran, under CMIP6 scenarios. doi:10.1007/s00704-022-04274-3
[12] DOI Vrac, M.; Thao, S.; Yiou, P. (2022). Should Multivariate Bias Corrections of Climate Simulations Account for Changes of Rank Correlation Over Time?. doi:10.1029/2022jd036562

Is related to

[1] DOI Rogers, Matthew H.; Furtado, Jason C.; Anderson, Bruce T. (2022). The pacific decadal precession and its relationship to tropical pacific decadal variability in CMIP6 models. doi:10.1007/s00382-021-06114-y
[2] DOI Irving, Damien. (2021). A Mass and Energy Conservation Analysis of Drift in the CMIP6 Ensemble. doi:10.22541/au.161618917.70147304/v1
[3] DOI Raji, Pushpalatha; Shiny, Rajan; Byju, Gangadharan. (2021). Impact of climate change on the potential geographical suitability of cassava and sweet potato vs. rice and potato in India. doi:10.1007/s00704-021-03763-1

Is cited by

[1] DOI Lee, J.-Y.; Marotzke, J.; Bala, G.; Cao, L.; Corti, S.; Dunne, J.P.; Engelbrecht, F.; Fischer, E.; Fyfe, J.C; Jones, C.; Maycock, A.; Mutemi, J.; Ndiaye, O.; Panickal, S.; Zhou,T. (2023). Future Global Climate: Scenario-Based Projections and Near-Term Information. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.006
[2] DOI Eyring, V.; Gillett, N.P.; Achuta Rao, K.M.; Barimalala, R.; Barreiro Parrillo, M.; Bellouin, N.; Cassou, C.; Durack, P.J.; Kosaka, Y.; McGregor, S.; Min, S.; Morgenstern, O.; Sun, Y. (2023). Human Influence on the Climate System. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.005
[3] DOI Doblas-Reyes, F.J.; Sörensson, A.A.; Almazroui, M.; Dosio, A.; Gutowski, W.J.; Haarsma, R.; Hamdi, R.; Hewitson, B.; Kwon, W.-T.; Lamptey, B.L.; Maraun, D.; Stephenson, T.S.; Takayabu, I.; Terray, L.; Turner, A.; Zuo, Z. (2023). Linking Global to Regional Climate Change. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.012
[4] DOI Intergovernmental Panel on Climate Change (IPCC). (2023). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896
[5] DOI Douville, H.; Raghavan, K.; Renwick, J.; Allan, R.P.; Arias, P.A.; Barlow, M.; Cerezo-Mota, R.; Cherchi, A.; Gan, T.Y.; Gergis, J.; Jiang, D.; Khan, A.; Pokam Mba, W.; Rosenfeld, D.; Tierney, J.; Zolina, O. (2023). Water Cycle Changes. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.010

Parent

WCRP CMIP6 CMIP BCC BCC-CSM2-MR
Details

Attached Datasets ( 142 )

Details for selected entry
[Entry acronym: C6_4101197] [Entry id: 4101197]