Is part of
[1] DOI Wu, Tongwen; Chu, Min; Dong, Min; Fang, Yongjie; Jie, Weihua; Li, Jianglong; Li, Weiping; Liu, Qianxia; Shi, Xueli; Xin, Xiaoge; Yan, Jinghui; Zhang, Fang; Zhang, Jie; Zhang, Li; Zhang, Yanwu.
(2018).
BCC BCC-CSM2MR model output prepared for CMIP6 CMIP piControl. doi:10.22033/ESGF/CMIP6.3016 Is referenced by
[1] DOI McKenna, Christine M.; Maycock, Amanda C.; Forster, Piers M.; Smith, Christopher J.; Tokarska, Katarzyna B.
(2020).
Stringent mitigation substantially reduces risk of unprecedented near-term warming rates. doi:10.1038/s41558-020-00957-9 [2] DOI Hamed, Mohammed Magdy; Nashwan, Mohamed Salem; Shahid, Shamsuddin; Ismail, Tarmizi bin; Dewan, Ashraf; Asaduzzaman, Md.
(2022).
Thermal bioclimatic indicators over Southeast Asia: present status and future projection using CMIP6. doi:10.1007/s11356-022-22036-6 [3] DOI Irving, Damien; Hobbs, Will; Church, John; Zika, Jan.
(2020).
A Mass and Energy Conservation Analysis of Drift in the CMIP6 Ensemble. doi:10.1175/jcli-d-20-0281.1 [4] DOI Vrac, Mathieu; Thao, Soulivanh; Yiou, Pascal.
(2022).
Should multivariate bias corrections of climate simulations account for changes of rank correlation over time?. doi:10.1002/essoar.10510318.1 [5] DOI Vrac, Mathieu; Thao, Soulivanh; Yiou, Pascal.
(2022).
Changes in temperature–precipitation correlations over Europe: are climate models reliable?. doi:10.1007/s00382-022-06436-5 [6] DOI Yiou, Pascal; Faranda, Davide; Thao, Soulivanh; Vrac, Mathieu.
(2021).
Projected Changes in the Atmospheric Dynamics of Climate Extremes in France. doi:10.3390/atmos12111440 [8] DOI Rogers, Matthew H.; Furtado, Jason; Anderson, Bruce.
(2021).
The Pacific Decadal Precession and its Relationship to Tropical Pacific Decadal Variability in CMIP6 Models. doi:10.21203/rs.3.rs-390152/v1 [9] DOI Ghajarnia, Navid; Kalantari, Zahra; Destouni, Georgia.
(2021).
Data‐Driven Worldwide Quantification of Large‐Scale Hydroclimatic Covariation Patterns and Comparison With Reanalysis and Earth System Modeling. doi:10.1029/2020wr029377 [10] DOI Correa, Wesley de Souza Campos; Soares, Wagner Rodrigues; Aylas, Georgynio Yossimar Rosales; Reis Junior, Neyval Costa; Marengo, José Antonio; Chou, Sin Chan; Nobre, Carlos.
(2023).
Avaliação das simulações de temperatura e precipitação de um subconjunto de modelos do CMIP6 para o Brasil. doi:10.14295/derb.v43.774 [11] DOI Niazkar, Majid; Goodarzi, Mohammad Reza; Fatehifar, Atiyeh; Abedi, Mohammad Javad.
(2022).
Machine learning-based downscaling: application of multi-gene genetic programming for downscaling daily temperature at Dogonbadan, Iran, under CMIP6 scenarios. doi:10.1007/s00704-022-04274-3 [12] DOI Vrac, M.; Thao, S.; Yiou, P.
(2022).
Should Multivariate Bias Corrections of Climate Simulations Account for Changes of Rank Correlation Over Time?. doi:10.1029/2022jd036562 Is cited by
[1] DOI Lee, J.-Y.; Marotzke, J.; Bala, G.; Cao, L.; Corti, S.; Dunne, J.P.; Engelbrecht, F.; Fischer, E.; Fyfe, J.C; Jones, C.; Maycock, A.; Mutemi, J.; Ndiaye, O.; Panickal, S.; Zhou,T.
(2023).
Future Global Climate: Scenario-Based Projections and Near-Term Information. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.006 [2] DOI Eyring, V.; Gillett, N.P.; Achuta Rao, K.M.; Barimalala, R.; Barreiro Parrillo, M.; Bellouin, N.; Cassou, C.; Durack, P.J.; Kosaka, Y.; McGregor, S.; Min, S.; Morgenstern, O.; Sun, Y.
(2023).
Human Influence on the Climate System. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.005 [3] DOI Doblas-Reyes, F.J.; Sörensson, A.A.; Almazroui, M.; Dosio, A.; Gutowski, W.J.; Haarsma, R.; Hamdi, R.; Hewitson, B.; Kwon, W.-T.; Lamptey, B.L.; Maraun, D.; Stephenson, T.S.; Takayabu, I.; Terray, L.; Turner, A.; Zuo, Z.
(2023).
Linking Global to Regional Climate Change. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.012 [4] DOI Intergovernmental Panel on Climate Change (IPCC).
(2023).
Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896 [5] DOI Douville, H.; Raghavan, K.; Renwick, J.; Allan, R.P.; Arias, P.A.; Barlow, M.; Cerezo-Mota, R.; Cherchi, A.; Gan, T.Y.; Gergis, J.; Jiang, D.; Khan, A.; Pokam Mba, W.; Rosenfeld, D.; Tierney, J.; Zolina, O.
(2023).
Water Cycle Changes. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.010