MPI-ESM-1.2 output of LAMACLIMA work package 1 (WP1): idealized constant global cropland expansion with irrigation (IRR) under present-day environmental conditions - Emon

Guo, Suqi et al.

Dataset
Summary
[ Derived from parent entry - See data hierarchy tab ]

This dataset contains MPI-ESM-1.2-LR output from the work package 1 (WP1) IRR scenario of idealized constant global cropland expansion with irrigation. Similar to the CROP scenario, the simulation branches from the 2014 CMIP6 historical concentration-driven simulation and spans 160 years (2015-01-01 to 2174-12-31), with anthropogenic (trace gases, aerosols, population density) and natural forcings (solar radiation, wildfire, lightning, natural aerosols) held constant at 2014 levels.
In the IRR scenario, irrigation water is added to those grid cells which were also changed to 100% cropland in the CROP scenario. Since there is no native irrigation scheme in JSBACH3.2, we have implemented a rather simple scheme as follows: The soil moisture of the first (0–0.065 m) and second
(0.065–0.319 m) soil layers (out of five) is filled at each simulation time step (20–30 min) to field capacity if the field capacity was not reached and if enough irrigation water is available in the irrigation water storage. Irrigation water is stored in a virtual reservoir at each time step when the reservoir drops below 0.2 m and is filled up with all available water from (surface) runoff and drainage during that time step. Generally, we ran the land model JSBACH3.2 with the following options:
- use_dynveg = false
- use_disturbance = true
- lcc_forcing_type = transitions
- lcc_scheme = 2
This approach mimics cropland expansion with irrigation across all vegetated, cropland and urban areas but avoids cropland being established in e.g. desert, high-altitude and tundra regions (unhospitable land). The checkerboard-like pattern, with its homogeneous distribution of changed and unchanged grid cells, allows the application of an established method to separate local and nonlocal biogeophyiscal as well as biogoechemical effects of this land management change to be compared to the scenario of cropland expansion without irrigation (CROP) (see Winckler et al., 2017 (doi: 10.1175/JCLI-D-16-0067.1), De Hertog et al., 2023 (doi: 10.5194/esd-14-629-2023), and Guo et al., 2025 (doi: 10.5194/esd-16-631-2025)).
Project
LAMACLIMA (Output of fully coupled Earth system model simulations for LAMACLIMA research project: four idealized constant global land-use scenarios (WP1) and two contrasting policy-relevant future mitigation land-use scenarios (WP4).)
Spatial Coverage
Longitude 0 to 360 Latitude -90 to 90
Temporal Coverage
2015-01-01 to 2175-12-31 (proleptic_gregorian)
Use constraints
Creative Commons Attribution 4.0 International (https://creativecommons.org/licenses/by/4.0/)
Data Catalog
World Data Center for Climate
Access constraints
registered users
Size
126.92 GiB (136274255973 Byte)
Format
NetCDF
Status
completely archived
Creation Date
Future Review Date
2035-11-13
Download Permission
Please login to check permission and download options
Cite as
[ Derived from parent entry - See data hierarchy tab ]
Guo, Suqi; Havermann, Felix; De Hertog, Steven; Luo, Fei; Manola, Iris; Thiery, Wim; Lejeune, Quentin; Schleussner, Carl-Friedrich; Pongratz, Julia; Seeberg, Gereon (2025). MPI-ESM-1.2 output of LAMACLIMA work package 1 (WP1): idealized global land-use scenarios, including cropland expansion, re-/afforestation, irrigation, wood harvest, and reference control. World Data Center for Climate (WDCC) at DKRZ. https://doi.org/10.26050/WDCC/LC_WP1_MP

BibTeX RIS
VariableAggregationUnit
air_temperature
CF
EmonK
area_fraction
CF
Emon%
carbon_mass_flux_into_forestry_and_agricultural_products_due_to_anthropogenic_land_use_or_land_cover_change
CF
Emonkg m-2 s-1
depth_of_isosurface_of_sea_water_potential_temperature
CF
Emonm
dew_point_temperature
CF
EmonK
eastward_wind
CF
Emonm s-1
geopotential_height
CF
Emonm
gross_primary_productivity_of_biomass_expressed_as_carbon
CF
Emonkg m-2 s-1
integral_wrt_depth_of_product_of_sea_water_density_and_potential_temperature
CF
EmondegC kg m-2
integral_wrt_depth_of_product_of_sea_water_density_and_salinity
CF
Emong m-2
lagrangian_tendency_of_air_pressure
CF
EmonPa s-1
leaf_area_index
CF
Emon1
litter_mass_content_of_carbon
CF
Emonkg m-2
litter_mass_content_of_nitrogen
CF
Emonkg m-2
mass_content_of_carbon_in_vegetation_and_litter_and_soil_and_forestry_and_agricultural_products
CF
Emonkg m-2
mass_content_of_nitrogen_in_vegetation_and_litter_and_soil_and_forestry_and_agricultural_products
CF
Emonkg m-2
mass_content_of_water_in_soil_layer
CF
Emonkg m-2
mass_flux_of_carbon_into_forestry_and_agricultural_products_due_to_crop_harvesting
CF
Emonkg m-2 s-1
mass_flux_of_carbon_out_of_soil_due_to_leaching_and_runoff
CF
Emonkg m-2 s-1
mass_flux_of_nitrogen_compounds_expressed_as_nitrogen_out_of_litter_and_soil_due_to_immobilisation_and_remineralization
CF
Emonkg m-2 s-1
minus_tendency_of_atmosphere_mass_content_of_nitrogen_compounds_expressed_as_nitrogen_due_to_deposition
CF
Emonkg m-2 s-1
net_primary_productivity_of_biomass_expressed_as_carbon
CF
Emonkg m-2 s-1
net_rate_of_absorption_of_shortwave_energy_in_ocean_layer
CF
EmonW m-2
nitrogen_mass_content_of_forestry_and_agricultural_products
CF
Emonkg m-2
nitrogen_mass_flux_into_forestry_and_agricultural_products_due_to_anthropogenic_land_use_or_land_cover_change
CF
Emonkg m-2 s-1
northward_wind
CF
Emonm s-1
sea_water_potential_temperature
CF
EmondegC
sinking_mole_flux_of_calcite_expressed_as_carbon_in_sea_water
CF
Emonmol m-2 s-1
sinking_mole_flux_of_particulate_silicon_in_sea_water
CF
Emonmol m-2 s-1
soil_mass_content_of_carbon
CF
Emonkg m-2
soil_mass_content_of_inorganic_nitrogen_expressed_as_nitrogen
CF
Emonkg m-2
soil_mass_content_of_nitrogen
CF
Emonkg m-2
specific_humidity
CF
Emon1
surface_air_pressure
CF
EmonPa
surface_net_downward_longwave_flux
CF
EmonW m-2
surface_net_downward_mass_flux_of_carbon_dioxide_expressed_as_carbon_due_to_all_land_processes
CF
Emonkg m-2 s-1
surface_net_downward_mass_flux_of_carbon_dioxide_expressed_as_carbon_due_to_all_land_processes_excluding_anthropogenic_land_use_change
CF
Emonkg m-2 s-1
surface_net_downward_shortwave_flux
CF
EmonW m-2
surface_net_upward_mass_flux_of_carbon_dioxide_expressed_as_carbon_due_to_emission_from_anthropogenic_land_use_change
CF
Emonkg m-2 s-1
surface_upward_mass_flux_of_carbon_dioxide_expressed_as_carbon_due_to_heterotrophic_respiration
CF
Emonkg m-2 s-1
surface_upward_mass_flux_of_carbon_dioxide_expressed_as_carbon_due_to_plant_respiration
CF
Emonkg m-2 s-1
surface_upward_mass_flux_of_carbon_due_to_heterotrophic_respiration_in_soil
CF
Emonkg m-2 s-1
surface_upward_mass_flux_of_nitrogen_compounds_expressed_as_nitrogen
CF
Emonkg m-2 s-1
surface_upward_mass_flux_of_nitrogen_compounds_expressed_as_nitrogen_due_to_all_land_processes_excluding_fires
CF
Emonkg m-2 s-1
surface_upward_mass_flux_of_nitrogen_compounds_expressed_as_nitrogen_due_to_emission_from_fires
CF
Emonkg m-2 s-1
surface_upward_mass_flux_of_nitrogen_compounds_expressed_as_nitrogen_out_of_vegetation_and_litter_and_soil
CF
Emonkg m-2 s-1
surface_upward_mass_flux_of_nitrous_oxide_expressed_as_nitrogen_out_of_vegetation_and_litter_and_soil
CF
Emonkg m-2 s-1
tendency_of_air_temperature_due_to_boundary_layer_mixing
CF
EmonK s-1
tendency_of_air_temperature_due_to_longwave_heating
CF
EmonK s-1
tendency_of_air_temperature_due_to_model_physics
CF
EmonK s-1
tendency_of_air_temperature_due_to_shortwave_heating
CF
EmonK s-1
tendency_of_air_temperature_due_to_stratiform_cloud_and_precipitation
CF
EmonK s-1
tendency_of_atmosphere_mass_content_of_carbon_dioxide_expressed_as_carbon_due_to_emission_from_forestry_and_agricultural_products
CF
Emonkg m-2 s-1
tendency_of_atmosphere_mass_content_of_nitrogen_compounds_expressed_as_nitrogen_due_to_anthropogenic_emission
CF
Emonkg m-2 s-1
tendency_of_mole_concentration_of_particulate_organic_matter_expressed_as_carbon_in_sea_water_due_to_net_primary_production_by_diazotrophs
CF
Emonmol m-3 s-1
tendency_of_mole_concentration_of_particulate_organic_matter_expressed_as_carbon_in_sea_water_due_to_net_primary_production_by_miscellaneous_phytoplankton
CF
Emonmol m-3 s-1
tendency_of_sea_water_potential_temperature_expressed_as_heat_content
CF
EmonW m-2
tendency_of_sea_water_potential_temperature_expressed_as_heat_content_due_to_parameterized_eddy_advection
CF
EmonW m-2
tendency_of_sea_water_potential_temperature_expressed_as_heat_content_due_to_parameterized_eddy_dianeutral_mixing
CF
EmonW m-2
tendency_of_sea_water_potential_temperature_expressed_as_heat_content_due_to_parameterized_mesoscale_eddy_diffusion
CF
EmonW m-2
tendency_of_sea_water_salinity_expressed_as_salt_content
CF
Emonkg m-2 s-1
tendency_of_sea_water_salinity_expressed_as_salt_content_due_to_parameterized_eddy_advection
CF
Emonkg m-2 s-1
tendency_of_sea_water_salinity_expressed_as_salt_content_due_to_parameterized_eddy_dianeutral_mixing
CF
Emonkg m-2 s-1
tendency_of_sea_water_salinity_expressed_as_salt_content_due_to_parameterized_mesoscale_eddy_diffusion
CF
Emonkg m-2 s-1
tendency_of_sea_water_salinity_expressed_as_salt_content_due_to_residual_mean_advection
CF
Emonkg m-2 s-1
tendency_of_soil_and_vegetation_mass_content_of_nitrogen_compounds_expressed_as_nitrogen_due_to_fixation
CF
Emonkg m-2 s-1
tendency_of_specific_humidity_due_to_boundary_layer_mixing
CF
Emons-1
tendency_of_specific_humidity_due_to_stratiform_cloud_and_precipitation
CF
Emons-1
tendency_of_vegetation_mass_content_of_nitrogen_compounds_expressed_as_nitrogen_due_to_fixation
CF
Emonkg m-2 s-1
vegetation_carbon_content
CF
Emonkg m-2
vegetation_mass_content_of_nitrogen
CF
Emonkg m-2
wind_speed
CF
Emonm s-1

Parent

MPI-ESM-1.2 output of LAMACLIMA work package 1 (WP1): idealized constant global cropland expansion with irrigation (IRR) under present-day environmental conditions
Details
[Entry acronym: LC_WP1_MP_IRRI_Emon] [Entry id: 5348722]