[ Derived from parent entry - See data hierarchy tab ]
Climate data for adaptation and vulnerability assessments — southwest (ClimAVA-SW) provides bias-corrected, downscaled daily climatic data at ~4km spatial resolution from 17 CMIP6 GCMs, three different climatic variables (pr, tasmax, and tasmin), and three different shared socioeconomic pathways (SSP245, SSP370, and SSP585). Historical runs span from January 1, 1981, to December 31, 2014. Future scenarios span from January 1, 2015, to December 31, 2100. The ClimAVA-SW dataset encompasses the geopolitical boundaries of the six states in the southwestern United States: California, Nevada, Arizona, New Mexico, Utah, and Colorado, as well as watersheds that run into these states. Employing the Spatial Pattern Interactions Downscaling (SPID) method, ClimAVA ensures high-quality downscaling using machine learning models. These models capture the relationship between spatial patterns at Global Circulation Model (GCM) resolution and fine-resolution pixel values derived from the reference data (PRISM 4K). A random forest model is trained for each pixel, using the finer reference data as a predictand and nine pixels from the spatially resampled (coarser) version of the reference data as predictors. These models are then utilized to downscale the bias-corrected GCM data. Results from this method have proven to maintain climate realism and greatly represent extreme events.