CMIP6 CMIP MIROC MIROC6 piControl

doi:10.26050/WDCC/AR6.C6CMMIMIpc

Tatebe, Hiroaki; Watanabe, Masahiro

Dataset GroupDOI
Summary
These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.CMIP.MIROC.MIROC6.piControl' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The MIROC6 climate model, released in 2017, includes the following components: aerosol: SPRINTARS6.0, atmos: CCSR AGCM (T85; 256 x 128 longitude/latitude; 81 levels; top level 0.004 hPa), land: MATSIRO6.0, ocean: COCO4.9 (tripolar primarily 1deg; 360 x 256 longitude/latitude; 63 levels; top grid cell 0-2 m), seaIce: COCO4.9. The model was run by the JAMSTEC (Japan Agency for Marine-Earth Science and Technology, Kanagawa 236-0001, Japan), AORI (Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba 277-8564, Japan), NIES (National Institute for Environmental Studies, Ibaraki 305-8506, Japan), and R-CCS (RIKEN Center for Computational Science, Hyogo 650-0047, Japan) (MIROC) in native nominal resolutions: aerosol: 250 km, atmos: 250 km, land: 250 km, ocean: 100 km, seaIce: 100 km.
Project
IPCC-AR6_CMIP6 (Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets)
Contact
Dr. Hiroaki Tatebe (
 tatebe@nulljamstec.go.jp
)
Location(s)
global
Spatial Coverage
Longitude 0 to 360 Latitude -90 to 90
Temporal Coverage
3200-01-16 to 3999-12-16 (gregorian)
Use constraints
Creative Commons Attribution 4.0 International (CC BY 4.0) (https://creativecommons.org/licenses/by/4.0/)
Data Catalog
World Data Center for Climate
Size
346.87 GiB (372444085142 Byte)
Format
NetCDF
Status
completely archived
Creation Date
Future Review Date
2032-12-12
Cite as
Tatebe, Hiroaki; Watanabe, Masahiro (2023). IPCC DDC: MIROC MIROC6 model output prepared for CMIP6 CMIP piControl. World Data Center for Climate (WDCC) at DKRZ. https://doi.org/10.26050/WDCC/AR6.C6CMMIMIpc

BibTeX RIS
Description
assessed by IPCC WGI AR6 authors
Method
IPCC Assessment
Method Description
The data was part of a formal IPCC assessment conducted by the IPCC authors.
Method Url
Description
All TQA checks were passed for CMIP6 CMIP MIROC MIROC6 piControl.
Method
CMIP6-TQA Checks
Method Description
Checks performed by WDCC. CMIP6-TQA metrics are documented: https://redmine.dkrz.de/projects/cmip6-lta-and-data-citation/wiki/Quality_Checks
Method Url
Result Date
2023-04-04
Contact typePersonORCIDOrganization
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Cites

[1] DOI Durack, Paul J.; Taylor, Karl E. (2017). PCMDI AMIP SST and sea-ice boundary conditions version 1.1.2. doi:10.22033/ESGF/input4MIPs.1161
[2] DOI Matthes, Katja; Funke, Bernd; Kruschke, Tim; Wahl, Sebastian. (2017). input4MIPs.SOLARIS-HEPPA.solar.CMIP.SOLARIS-HEPPA-3-2. doi:10.22033/ESGF/input4MIPs.1122
[3] DOI van Marle, Margreet J.E.; Kloster, Silvia; Magi, Brian I.; Marlon, Jennifer R.; Daniau, Anne-Laure; Field, Robert D.; Arneth, Almut; Forrest, Matthew; Hantson, Stijn; Kehrwald, Natalie M.; Knorr, Wolfgang; Lasslop, Gitta; Li, Fang; Mangeon, Stéphane; Yue, Chao; Kaiser, Johannes W.; van der Werf, Guido R. (2016). Biomass Burning emissions for CMIP6 (v1.2). doi:10.22033/ESGF/input4MIPs.1117
[4] DOI Hurtt, George; Chini, Louise; Sahajpal, Ritvik; Frolking, Steve; Bodirsky, Benjamin Leon; Calvin, Kate; Doelman, Jonathan; Fisk, Justin; Fujimori, Shinichiro; Goldewijk, Kees Klein; Hasegawa, Tomoko; Havlik, Petr; Heinimann, Andreas; Humpenöder, Florian; Jungclaus, Johann; Kaplan, Jed; Krisztin, Tamás; Lawrence, David; Lawrence, Peter; Mertz, Ole; Pongratz, Julia; Popp, Alexander; Riahi, Keywan; Shevliakova, Elena; Stehfest, Elke; Thornton, Peter; van Vuuren, Detlef; Zhang, Xin. (2017). Harmonization of global land use scenarios (LUH2): Historical v2.1h 850 - 2015. doi:10.22033/ESGF/input4MIPs.1127
[5] DOI Hoesly, Rachel; Smith, Steven; Feng, Leyang; Klimont, Zbigniew; Janssens-Maenhout, Greet; Pitkanen, Tyler; Seibert, Jonathan J.; Vu, Linh; Andres, Robert J.; Bolt, Ryan M.; Bond, Tami C.; Dawidowski, Laura; Kholod, Nazar; Kurokawa, Jun-ichi; Li, Meng; Liu, Liang; Lu, Zifeng; Moura, Maria Cecilia P.; O'Rourke, Patrick R.; Zhang, Qiang. (2017). Historical Emissions (1750 - 2014) - CEDS - v2017-05-18. doi:10.22033/ESGF/input4MIPs.1241
[6] DOI Kennedy, John; Titchner, Holly; Rayner, Nick; Roberts, Malcolm. (2017). input4MIPs.MOHC.SSTsAndSeaIce.HighResMIP.MOHC-HadISST-2-2-0-0-0. doi:10.22033/ESGF/input4MIPs.1221
[7] DOI Meinshausen, Malte; Vogel, Elisabeth. (2016). input4MIPs.UoM.GHGConcentrations.CMIP.UoM-CMIP-1-2-0. doi:10.22033/ESGF/input4MIPs.1118
[8] DOI Lee, J.-Y.; Marotzke, J.; Bala, G.; Cao, L.; Corti, S.; Dunne, J.P.; Engelbrecht, F.; Fischer, E.; Fyfe, J.C; Jones, C.; Maycock, A.; Mutemi, J.; Ndiaye, O.; Panickal, S.; Zhou,T. (2023). Future Global Climate: Scenario-Based Projections and Near-Term Information. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.006
[9] DOI Eyring, V.; Gillett, N.P.; Achuta Rao, K.M.; Barimalala, R.; Barreiro Parrillo, M.; Bellouin, N.; Cassou, C.; Durack, P.J.; Kosaka, Y.; McGregor, S.; Min, S.; Morgenstern, O.; Sun, Y. (2023). Human Influence on the Climate System. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.005
[10] DOI Doblas-Reyes, F.J.; Sörensson, A.A.; Almazroui, M.; Dosio, A.; Gutowski, W.J.; Haarsma, R.; Hamdi, R.; Hewitson, B.; Kwon, W.-T.; Lamptey, B.L.; Maraun, D.; Stephenson, T.S.; Takayabu, I.; Terray, L.; Turner, A.; Zuo, Z. (2023). Linking Global to Regional Climate Change. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.012
[11] DOI Intergovernmental Panel on Climate Change (IPCC). (2023). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896
[12] DOI Douville, H.; Raghavan, K.; Renwick, J.; Allan, R.P.; Arias, P.A.; Barlow, M.; Cerezo-Mota, R.; Cherchi, A.; Gan, T.Y.; Gergis, J.; Jiang, D.; Khan, A.; Pokam Mba, W.; Rosenfeld, D.; Tierney, J.; Zolina, O. (2023). Water Cycle Changes. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.010

Is part of

[1] DOI Tatebe, Hiroaki; Watanabe, Masahiro. (2018). MIROC MIROC6 model output prepared for CMIP6 CMIP piControl. doi:10.22033/ESGF/CMIP6.5711
[2] DOI Tatebe, Hiroaki; Watanabe, Masahiro. (2023). IPCC DDC: MIROC MIROC6 model output prepared for CMIP6 CMIP. doi:10.26050/WDCC/AR6.C6CMMIMI

Is referenced by

[1] DOI Yamagami, Yoko; Watanabe, Masahiro; Mori, Masato; Ono, Jun. (2022). Barents-Kara sea-ice decline attributed to surface warming in the Gulf Stream. doi:10.1038/s41467-022-31117-6
[2] DOI McKenna, Christine M.; Maycock, Amanda C.; Forster, Piers M.; Smith, Christopher J.; Tokarska, Katarzyna B. (2020). Stringent mitigation substantially reduces risk of unprecedented near-term warming rates. doi:10.1038/s41558-020-00957-9
[3] DOI Paulot, Fabien; Naik, Vaishali; W. Horowitz, Larry. (2022). Reduction in Near‐Surface Wind Speeds With Increasing CO2 May Worsen Winter Air Quality in the Indo‐Gangetic Plain. doi:10.1029/2022gl099039
[4] DOI Rogers, Matthew H.; Furtado, Jason; Anderson, Bruce. (2021). The Pacific Decadal Precession and its Relationship to Tropical Pacific Decadal Variability in CMIP6 Models. doi:10.21203/rs.3.rs-390152/v1

References

[1] DOI Tatebe, Hiroaki; Ogura, Tomoo; Nitta, Tomoko; Komuro, Yoshiki; Ogochi, Koji; Takemura, Toshihiko; Sudo, Kengo; Sekiguchi, Miho; Abe, Manabu; Saito, Fuyuki; Chikira, Minoru; Watanabe, Shingo; Mori, Masato; Hirota, Nagio; Kawatani, Yoshio; Mochizuki, Takashi; Yoshimura, Kei; Takata, Kumiko; O'ishi, Ryouta; Yamazaki, Dai; Suzuki, Tatsuo; Kurogi, Masao; Kataoka, Takahito; Watanabe, Masahiro; Kimoto, Masahide. (2018). Description and basic evaluation of simulated mean state, internal variability, and climate sensitivity in MIROC6. doi:10.5194/gmd-2018-155
[2] DOI Tatebe, Hiroaki; Ogura, Tomoo; Nitta, Tomoko; Komuro, Yoshiki; Ogochi, Koji; Takemura, Toshihiko; Sudo, Kengo; Sekiguchi, Miho; Abe, Manabu; Saito, Fuyuki; Chikira, Minoru; Watanabe, Shingo; Mori, Masato; Hirota, Nagio; Kawatani, Yoshio; Mochizuki, Takashi; Yoshimura, Kei; Takata, Kumiko; O'ishi, Ryouta; Yamazaki, Dai; Suzuki, Tatsuo; Kurogi, Masao; Kataoka, Takahito; Watanabe, Masahiro; Kimoto, Masahide. (1900). Description and basic evaluation of simulated mean state, internal variability, and climate sensitivity in MIROC6. doi:10.5194/gmd-12-2727-2019

Is related to

[1] DOI Rogers, Matthew H.; Furtado, Jason C.; Anderson, Bruce T. (2022). The pacific decadal precession and its relationship to tropical pacific decadal variability in CMIP6 models. doi:10.1007/s00382-021-06114-y

Parent

CMIP6 CMIP MIROC MIROC6
Details

Attached Datasets ( 33 )

Details for selected entry
[Entry acronym: C6CMMIMIpc] [Entry id: 3904669]